Test I

Instructions: This test is due Monday, 27 March. You may consult any written or online source. You may not consult any person, either a fellow student or faculty member, except me.

1. (10 pts.) Find the Hamiltonian description for the nonlinear mass-spring system,

$$m\ddot{x} + k_1 x + k_2 x^3 = 0.$$

- 2. (10 pts.) Using quadratic polynomials, approximate the first eigenvalue of $u'' + \lambda u = 0$, u(0) = 0, u(1) + u'(1) = 0.
- 3. Geodesics on the unit sphere \mathbb{S}^2 are extremals for the functional

$$J[\mathbf{x}(t)] = \int_a^b \sqrt{\dot{\theta}^2 + \sin^2 \theta \, \dot{\phi}^2} \, dt,$$

where **x** is a point on the unit sphere and (θ, ϕ) are its spherical coordinates; **x**(t) is a curve parametrized by $t \in [a, b]$.

- (a) (10 pts.) Take the starting point as the north pole of the sphere and assume that $t=\theta$, so the we are working with $\phi=\phi(\theta)$. Show that the extremals are just the great circles given by $\phi=$ constant.
- (b) (5 pts.) Show that on any of these extremals the only point conjugate to the north pole is the south pole.
- 4. **(10 pts.)** Let F(z) be entire (i.e., analytic on \mathbb{C}). If F is bounded on the real axis and satisfies the overall bound $|F(z)| \leq Ae^{\sigma|z|}$, then $|F(z)| \leq Be^{\sigma|\operatorname{Im}(z)|}$. (Hint: $G(z) = F(z)e^{i(\sigma+\epsilon)z}$ satisfies $|G(iy)| \leq A$ and $|F(x)| \leq \sup_{x \in \mathbb{R}} |G(x)|$. Apply the Phragmén-Lindelöf theorem for sectors that you derived in assignment 3.)
- 5. **(15 pts.)** Show that the map $z = \frac{1}{2}(w+1/w)$ takes a circle |w| = a > 1 onto an ellipse in the z-plane, and that the exterior of the circle, |w| > a corresponds to the exterior of the ellipse. Next, show that $\zeta = i \frac{w-a}{w+a}$ maps |w| = a to $\text{Im}(\zeta) = 0$, and |w| > a onto the upper half plane $\text{Im}(\zeta) > 0$. Use the resulting map to produce a flow that has constant velocity at $z = \infty$ and has the ellipse found earlier as a streamline.

6. (10 pts.) The Hermite polynomials $H_n(x)$ satisfy the recurrence relation,

$$H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x) = 0$$
, $H_0(x) = 1$ and $H_1(x) = 2x$.

Use this to show that the generating function for the Hermite polynomials is

$$\sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n = e^{2tx - t^2}.$$

7. Consider the operator Lu = -u'' defined on functions in $L^2[0, \infty)$ having u'' in $L^2[0, \infty)$ and satisfying the boundary condition that u'(0) = 0; that is, L has the domain

$$\mathcal{D}_L = \{ u \in L^2[0, \infty) \mid u'' \in L^2[0, \infty) \text{ and } u'(0) = 0 \}.$$

- (a) (5 pts.) Show that at least formally L is self-adjoint.
- (b) **(10 pts.)** Find the Green's function $G(x,\xi;z)$ for $-G''-zG=\delta(x-\xi)$, with $G'(0,\xi;z)=0$. (This is the kernel for the resolvent $(L-zI)^{-1}$.)
- (c) (15 pts.) Employ the spectral theorem, as we did in class, to obtain the cosine transform formulas,

$$F(\mu) = \int_0^\infty f(x) \cos(\mu x) dx \text{ and } f(x) = \frac{2}{\pi} \int_0^\infty F(\mu) \cos(\mu x) d\mu.$$