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Notes on Daubechies’ Wavelets
by
F. J. Narcowich

The Daubechies Wavelets We want to find the ¢;’s (scaling coefficients)
in the Daubechies” N = 2 case. In general, the two-scale relation has the
form

dx) =) exp(2w — k).

k

The Fourier transform of this equation is

~ ~

$(&) = P(e “/)p(¢/2),

where P(+) is given by
1
P(z) = 5 Ek crzk

One can also obtain the Fourier transform of the wavelet. Recall that the
wavelet is given by the expansion

() = S (= Dfrer_xd(2z — k). (1)

k
Taking the Fourier transform of both sides yields

. A 1

9(€) = Qe /)H(E/2), where Q(=) = 5 D (~1)er42 = —=P(=27).

Mallat’s original thinking in defining an MRA was that the spaces and
scaling functions were primary objects, and the scaling coefficients, the c¢;’s
were derived from them. However, he did give a way to start with coefficients
and obtain an MRA from them. To do that, there are three conditions that
P(z) must satisfy:

1. |[PR)P+|P(—=2)P =1, |z| = 1.
2. P(1) = 1.
3. |P(e”™)| > 0 for |t] < m/2.



Note that #1, with z = 1, gives |P(1)[*+|P(—1)|> = 1. By #2, P(1) = 1,
and so 12 + |P(—1)* = 1, from which it follows that

P(~1) = 0.

When there are only a finite number of non-zero c¢;’s, P is a polynomial.
Since z = —1 is a root of P, we see that P(z) has (z + 1), for some N, as
a factor; that is,

P(z) = (z+ D)VP(2), P(=1) #0,

where P(z) is the product of the remaining factors of P after dividing out
z 4+ 1 an appropriate number of times.

Let us return to the simplest case of a Daubechies wavelet, where there
are four scaling coefficients and P(z) is a cubic polynomial

1
P(z) = 3 (co+ 1z + 22”4 ¢32°%) . (2)

that satisfies the three conditions listed above. The values N can have are
1, 2, or 3. It turns out that N = 1 gives the Haar case (¢ = ¢; = 1,
¢ =c3=0), and N = 3 doesn’t work. If we take N = 2, then

P(z) = (z + 1)*(a + B2),

where a and (3 are also assumed to be real. From #2, 1 = (1 + 1)*(a + f3),
so a + (3 =1/4. Hence, we see that P has the form

P(z) = (2 +1)*(1/4 - B+ Bz)

The question remaining is, does P satisfy #1 and #37 To begin, we will try
to find a [ for which #1 is satisfied. We do this simply by finding a value
that works for z = ¢ (|i|] = 1), and check to see if it works for all z with
|z| = 1. We have

P(i) = (1+4)2*(1/4 - B+ Bi) =2i(1/4 — B+ Bi) = =268+ (1/2 — 2p)i
Similarly, P(—i) = —20 — (1/2 — 2/3)i. Consequently,

[P@)]* + [P(=i)|* = 2(=28)" + 2(1/2 — 20)* = 165" — 46+ 1/2



Since the left side is 1 by #1, we end up with 168* — 48 +1/2 = 1 or
163% — 43 —1/2 = 0. The roots of this equation are S = %g' It turns out
that both values of § provide appropriate ¢;’s. In fact, the scaling functions
they lead to are related to one another by a simple reflection of the z axis

about the line x = 3/2. If we choose the “—”, then

P(z) = 1(1 + 2)? ((1 +V3)+ (1 - \/g)z>

8
171 — —
_ 1 +\/§+3+\/§Z+3 \/§ZQ+1 \/523 |
2 4 4 4 4
—_— = S—— ——
co c1 co c3

These are the ¢;’s given in the text.

Showing that P(z) satisfies #1 in our list requires some algebra, but is
not really very hard. Verifying #3 is even easier. The only points at which
|P(2)| = 0 are precisely the roots of P; namely, z = —1 (a double root) and
z = 1}3—‘_? ~ 3.7. The root at 2 = —1 = €™ has angle t = © > 7/2, so #3
holds in that case. The root at z ~ 3.7 has |z| > 1, so #3 holds there as
well. Thus, for all [¢t| < /2, we have that |P(e™)| > 0.

Moments and Quadrature Let p: R — R. We define the & moment
of p via the integral

mi(p) = / " 2 p(a)de,

o0

where we assume x*p(x) € L'(R). (The function p doesn’t have to be posi-
tive.) It is easy to show that if p is a degree n polynomial p(z) = > | _, axz®
and if p has n + 1 moments, mg(p), ..., m,(p), then

[e.e]

| plaptais =3 aum (o) @

Proposition 0.1 Let § > 0. Suppose that supp(h) C [0, 9] and that the first
n 4 1 moments of p exist. If f(x) is in C™]0, 0], then

s n—1 ) 0 )] ;o
[ s = X L )] < R o)
> |



The point here is that the proposition above shows that the quadrature
formula

s 2l (k)
| st@taiae = X )

k=0

: L (n)
is accurate to within the error %\lﬂp(m)ﬂy[oﬂ.

We want to apply this to estimate the Daubechies wavelet coefficients,
where we will use (1), but shifted to the right by 1. This gives us this formula
for the wavelet:

U(x) = 30(22) — 202z — 1) + 1922 — 2) — cop(22 — 3).
The support of ¢ is [0, 3]. Here is the result we want.

Proposition 0.2 For the Daubechies wavelet above, my(¢) = my(¢)) = 0.
Moreover, the wavelet coefficient b{; for a function f € C® then satisfies the
bound ‘
il < V/3%/20 27| " Lo 2-ik, 3.2-sky-
——

<4

Proposition 0.3 For the Daubechies scaling function above, mo(¢) = 1 and
my(¢) = 3 —+/3. Moreover, the scaling coefficient aj, for a function f € c®
then satisfies the bound

@i~ F(27k) — (3~ VB[ (27K)27] < /35720 27| | migosn o
——

<4

We close by remarking that the “wavelet crime” of approximating ai with
f(279k) results in an error of order 277 if f is C(V).



