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1 The second variation

Let J[z] = ff F(t,xz,%)dt be a nonlinear functional, with z(a) = A and
x(b) = B fixed. As usual, we will assume that F' is as smooth as necessary.
The first variation of J is

ST [h] = / b (F(t,x,a’:) _ jtFi> h(t)dt,

where h(t) is assumed as smooth as necessary and in addition satisfies h(a) =
h(b) = 0. We will call such h admissible.

The idea behind finding the first variation is to capture the linear part
of the J[z]. Specifically, we have

J[x + eh] = J[z| + €dJ;[h] + o(e),
where o(¢) is a quantity that satisfies

lim @ =0.

e—=0 &€

The second variation comes out of the quadratic approximation in €,
1
J[z + eh] = J[x] + edJ[h] + 56252& [h] + o(?).
It follows that

AL j; (J[x - eh]>

e=0



To calculate it, we note that

d? b o2 ) .
d82<J[x+5h]> :/a 882<F(t,a:+sh,x+5h)>dt.

Applying the chain rule to the integrand, we see that

9?2 ] . 9 :
sz(Fthatehiteh) = o= (Fuh+ Fih)

=  Fyuh® + 2F,;hh + Fiih?,

where the various derivatives of F' are evaluated at (¢t,z + eh, & + ah) Set-
ting € = 0 and inserting the result in our earlier expression for the second
variation, we obtain

b
69, [h] = / Fuuh® 4 2F,;hh + Fiph2dt .
Note that the middle term can be written as 2thh = Fm%hQ. Using this

in the equation above, integrating by parts, and employing h(a) = h(b) = 0,
we arrive at

b
6T.[h] = / {(Fm —~ iFm)hQ + Fig h2}dt
a dt ~~
Q
b .
= / (Ph? + Qh*)dt. (1)

2 Legendre’s trick

Ultimately, we are interested in whether a given extremal for J is a weak
(relative) minimum or maximum. In the sequel we will always assume that
the function z(t) that we are working with is an extremal, so that z(t)
satisfies the Euler-Lagrange equation, %ng = F, makes the first variation
0J:[h] = 0 for all h, and fixes the functions P = F;; and Q = Fy, — %FM.
To be definite, we will always assume we are looking for conditions for the
extremum to be a weak minimum. The case of a maximum is similar.
Let’s look at the integrand Ph% + Qh? in (1). It is generally true that
a function can be bounded, but have a derivative that varies wildly. Our
intuition then says that Ph? is the dominant term, and this turns out to be
true. In looking for a minimum, we recall that it is necessary that 62/, [h] > 0



for all h. One can use this to show that, for a minimum, it is also necessary,
but not sufficient, that P > 0 on [a, b]. We will make the stronger assumption
that P > 0 on [a,b]. We also assume that P and @ are smooth.

Legendre had the idea to add a term to 6% to make it nonnegative.
Specifically, he added %(wh2) to the integrand in (1). Note that f; %(th)dt =
wh?|% = 0. Hence, we have this chain of equations,

0:[h)

b
64, () + / %(whz)dt

b
= /(Ph2+Qh2+jt(wh2))dt

b
= / (Ph2 + 2whh + (b + Q)hQ) dt (2)

- /bp(h+zh)2dt+/b<w+Q—l}f)h? (3)

where we completed the square to get the last equation. If we can find w(t)

such that

w2

b+ Q- =0, @
then the second variation becomes
b 2
Y, [h] = / P (h+ %h) dt. (5)
Equation (4) is called a Riccati equation. It can be turned into the
second order linear ODE below via the substitution w = —(u/u)P:
d du
—— | p= =
dt( dt) FQu=0, (©)

which is called the Jacobi equation for J. Two points t = a and t = &, a #
@, are said to be conjugate points for Jacobi’s equation if there is a solution
u to (6) such that u # 0 between a and @&, and such that u(a) = u(&) = 0.

When there are no points conjugate to ¢t = a in the interval [a, b], we can
construct a solution to (6) that is strictly positive on [a,b]. Start with the
two linearly indepemdent solutions ug and wu; to (6) that satsify the initial
conditions

uo(a) =0, up(a) =1, ui(a) =0, and 4;(a) = 1.



Since there is no point in [a,b] conjugate a, ug(t) # 0 for any a < ¢t < b.
In particular, since 4p(a) = 1 > 0, u(t) will be strictly positive on (a,b].
Next, because uj(a) = 1, there exists t = ¢, a < ¢ < b, such that uy(t) >
1/2 on [a,c]. Moreover, the continuity of ug and u; on [c,b] implies that
min.<;<p uo(t) = mo > 0 and min.<;<p u1(t) = my € R. It is easy to check
that on [a, b],

wi— 1 + Q\ml\

>1/2
2mg uo+up > 1/2,

and, of course, u solves (6).

This means that the substitutuion w = —(@/u) P yields a solution to the
Riccati equation (4), and so the second variation has the form given in (5).
It follows that §%J,[h] > 0 for any admissible h. Can the second variation
vanish for some h that is nonzero? That is, can we find an admissible h # 0
such that 6%,[h] = 0?7 If it did vanish, we would have to have

. w 2
P(h+Fh) —0, a<t<b,

and, since P > 0, this implies that h + ph = 0. This first order linear
equation has the unique solution,

t T)
- fa 111;57-) dT'

h(t) = h(a)e

However, since h is admissible, h(a) = h(b) = 0, and so h(t) = 0. We have
proved the following result.

Proposition 2.1. If there are no points in [a,b] conjugate to t = a, the
the second wariation is a positive definite quadratic functional. That is,
8%.[h] > 0 for any admissible h not identically 0.

3 Conjugate points

There is direct connection between conjugate points and extremals. Let
z(t,€) be a family of extremals for the functional J depending smoothly on
a parameter . We will assume that z(a,e) = A, which will be independent
of . These extremals all satisfy the Euler-Lagrange equation

Fo(t,x(t,e),z(t,e) = %F;U(t, x(t,e), (¢, ).



If we differentiate this equation with respect to &, being careful to correctly
apply the chain rule, we obtain

ox 0z d ox ox

g 22 2 Rty o A

m8£+ * Oe dt( m85+ M@E)
dt Oe e dt e

Cancelling and rearranging terms, we obtain

d or d ox

Set € = 0 and let u(t) = %(t, 0). Observe that the functions in the equation
above, which is called the variational equation, are just P = F;; and @) =
F.. — %FM. Consequently, (7) is simply the Jacobi equation (6). The
difference here is that we always have the initial conditions,

ox 0A
u(a) = a(a,O) =5 = 0,
o0x
u(a) = %(a, 0) 7é 0

We remark that if @(a) = 0, then u(t) = 0.
What do conjugate points mean in this context? Suppose that ¢ = a is
conjugate to t = a. Then we have

or . -
52 (@,0) = u(a) =0,

which holds independently of how our smooth family of extremals was con-
structed. It follows that at ¢t = a, we have z(a,e) = x(a,0) + o(e). Thus,
the family either crosses again at a, or comes close to it, accumulating to
order higher than e there.

4 Sufficient conditions

A sufficient condition for an extremal to be a relative minimum is that the
second variation be strongly positive definite. This means that there is a
¢ > 0, which is independent of h, such that for all admissible h one has

0[] > cllh] 7,



where H' = H'[a,b] denotes the usual Sobolev space of functions with
distributional derivatives in L?[a, b].

Let us return to equation (2), where we added in terms depending on
an arbitrary function w. In the integrand there, we will add and subtract
oPh?, where o is an arbitary constant. The only requirement for now is
that 0 < o < minye(qp) P(t). The result is

b b
52, [h] = / (P — )2 + 2whih + (i + Q1) dit + 0/ i2dt.
a a
For the first integral in the term on the right above, we repeat the argument

that was used to arrive at (5). Everything is the same, except that P is
replaced by P — 0. We arrive at this:

5[] = /ab(P o) <h + Pw_ah>2 dt

b w? b
+/ <u';+Q— >h2+0/ hdt .
a P—o a

We continue as we did in section 2. In the end, we arrive at the new
Jacobi equation,

(8)

_% <(P—U)CZL>+Q’U,:0. 9)

The point is that if for the Jacobi equation (6) there are no points in [a, b]
conjugate to a, then, because the solutions are continuous functions of the
parameter o, we may choose o small enough so that for (9) there will be no
points conjugate to a in [a,b]. Once we have fouund o small enough for this
to be true, we fix it. We then solve the corresponding Riccati equation and
employ it in (8) to obtain

b . w 2 b
64, [h] = /(P—a)<h+P h) dt+o/ h2dt

— 0
b'
> a/ h2dt .

Now, for an admissble h, it is easy to show that f; h2dt < M f: h2dt, so
that we have

2 b 2 b‘2 (b_a)2 b'2
HhHH1 = hedt + hedt < |1+ 5 h*dt.




Consequently, we obtain this inequality:

g
Il = el
2

5, [h) >

which is what we needed for a relative minimum. We summarize what we
found below.

Theorem 4.1. A sufficient condition for an extremal x(t) to be a relative
minimum for the functional J[x] = f; F(t,z,&)dt, where z(a) = A and
x(b) = B, is that P(t) = Fy;(t,x,2) > 0 for t € [a,b] and that the interval
[a,b] contain no points conjugate to t = a.



