Applied/Numerical Analysis Qualifying Exam

August 11, 2016

	Cover	Sheet	Applied	Analysis	Part
--	-------	-------	---------------------------	----------	------

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible
Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated
incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the
problem so that it becomes trivial.

3.7		
Name		
TTATIIC		

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 11, 2016

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Give an example of a function in \mathcal{D} .
- (c) Show that $\psi \in \mathcal{D}$ has the form $\psi(x) = \phi''(x)$ for some $\phi \in \mathcal{D}$ if and only if $\int_{-\infty}^{\infty} \psi(x) dx = \int_{-\infty}^{\infty} x \psi(x) dx = 0$.
- (d) Use 2(c) to solve, in the distributional sense, the differential equation u'' = 0.

Problem 2. Consider the operator Lu = -u'' defined on functions in $L^2[0,\infty)$ having u'' in $L^2[0,\infty)$ and satisfying the boundary condition that u'(0) = 0; that is, L has the domain

$$\mathcal{D}_L = \{ u \in L^2[0, \infty) \mid u'' \in L^2[0, \infty) \text{ and } u'(0) = 0 \}.$$

- (a) Find the Green's function $G(x,\xi;z)$ for $-G'''-zG=\delta(x-\xi)$, with $G_x(0,\xi;z)=0$.
- (b) Employ the spectral theorem (Stone's formula) to obtain the cosine transform formulas:

$$F(\mu) = \frac{2}{\pi} \int_0^\infty f(x) \cos(\mu x) dx \text{ and } f(x) = \int_0^\infty F(\mu) \cos(\mu x) d\mu.$$

Problem 3. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) Consider $K \in \mathcal{C}(\mathcal{H})$. Show that if $\{\phi_n\}_{n=0}^{\infty}$ is an orthonormal set in \mathcal{H} , then $\lim_{n\to\infty} K\phi_n = 0$.
- (b) Suppose that $K \in \mathcal{C}(\mathcal{H})$ is self adjoint.
 - (i) Show that $\sigma(K)$ (the spectrum) consists only of eigenvalues, together with 0, and that the only limit point of $\sigma(K)$ is 0.
 - (ii) Given that $||K|| = \sup_{\|u\|=1} |\langle Ku, u \rangle|$, show that either ||K|| or -||K|| (or possibly both) is an eigenvalue of K, and that the corresponding eigenspace is finite dimensional.

Problem 4. Suppose that f(x) is 2π -periodic function in $C^{(m)}(\mathbb{R})$, and that $f^{(m+1)}$ is piecewise continuous and 2π -periodic. Here m>0 is a fixed integer. Let c_k denote the k^{th} (complex) Fourier coefficient for f, and let $c_k^{(j)}$ denote the k^{th} (complex) Fourier coefficient for $f^{(j)}$.

- (a) Prove that $c_k^{(j)} = (ik)^j c_k$, j = 0, ..., m + 1. (Note: using term by term differentiation of the Fourier series assumes what you want to prove.)
- (b) For $k \neq 0$, show that c_k satisfies the bound

$$|c_k| \le \frac{1}{2\pi |k|^{m+1}} ||f^{(m+1)}||_{L^1[0,2\pi]}.$$

(c) Let $f_n(x) = \sum_{k=-n}^n c_k e^{ik\theta}$ be the n^{th} partial sum of the Fourier series for $f, n \ge 1$. Show that

$$||f - f_n||_{L^2[0,2\pi]} \le C \frac{||f^{(m+1)}||_{L^1[0,2\pi]}}{n^{m+\frac{1}{2}}},$$

where C is independent of f and n.