Applied/Numerical Analysis Qualifying Exam

January 12, 2016

Cover Sheet - Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Name

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part
 January 12, 2016

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Recall that the DFT and inverse DFT are given by $\hat{y}_{k}=\sum_{j=0}^{n-1} y_{j} \bar{w}^{j k}$ and $y_{j}=\frac{1}{n} \sum_{j=0}^{n-1} \hat{y}_{k} w^{j k}$, where $w=e^{2 \pi i / n}$.
(a) State and prove the Convolution Theorem for the DFT.
(b) Let a, x, y be column vectors with entries $a_{0}, \ldots, a_{n-1}, x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}$. In addition, let α, ξ and η be n-periodic sequences, the entries for one period, $k=0, \ldots, n-1$, being those of a, x, and y, respectively. Consider the circulant matrix

$$
A=\left(\begin{array}{ccccc}
a_{0} & a_{n-1} & a_{n-2} & \cdots & a_{1} \\
a_{1} & a_{0} & a_{n-1} & \cdots & a_{2} \\
a_{2} & a_{1} & a_{0} & \cdots & a_{3} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right) .
$$

Show that the matrix equation $A x=y$ is equivalent to convolution $\eta=\alpha * \xi$.
(c) Use parts (a) and (b) above to find the eigenvalues of

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right)
$$

Problem 2. Let $L u=-\left(e^{x} u^{\prime}\right)^{\prime}, u(0)=0, u^{\prime}(1)=0$.
(a) Find the Green's function $G(x, y)$ for $L u=-\left(e^{x} u^{\prime}\right)^{\prime}=f, u(0)=0, u^{\prime}(1)=0$.
(b) Why is $K f(x)=\int_{0}^{1} G(x, y) f(y) d y$ compact? (One sentence will do.)
(c) Consider the eigenvalue problem $L u=\lambda u, u(0)=0, u^{\prime}(1)=0$. Show that the (orthonormal) set of eigenfunctions for L form a complete set in $L^{2}[0,1]$.

Problem 3. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H}.
(a) State and prove the Closed Range Theorem.
(b) Let $\mathcal{H}=L^{2}[0,1]$. Define the kernel $k(x, y):=x^{2} y^{9}$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. Show the K is in $\mathcal{C}\left(L^{2}[0,1]\right)$.
(c) Let $L=I-\lambda K, \lambda \in \mathbb{C}$, with K as defined in part (b) above. Find all λ for which $L u=f$ can be solved for all $f \in L^{2}[0,1]$. For these values of λ, find the resolvent $(I-\lambda K)^{-1}$.

Problem 4. Recall that a geodesic on a surface provides the path of shortest distance between two points on a surface. Let S be the unit sphere in \mathbb{R}^{3}. In the coordinates shown above, the differential arc length is given by $d s=\sqrt{d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}}$. If $P_{0}=\left(\theta_{0}, 0\right)$ and $P_{1}=\left(\theta_{1}, 0\right), 0<\theta_{0}<\theta_{1}<\pi$, show that the geodesic is the arc of the great circle given by $\theta_{0} \leq \theta \leq \theta_{1}, \varphi=0$. Hint: describe curves joining the two points by $\varphi=u(\theta)$, where $u \in C^{2}\left[\theta_{0}, \theta_{1}\right]$ and satisfies $u\left(\theta_{0}\right)=u\left(\theta_{1}\right)=0$. Minimize the arc-length functional.

Applied/Numerical Analysis Qualifying Exam

January 12, 2016

Cover Sheet - Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Name

NUMERICAL ANALYSIS PART

January 12, 2016
Problem 1. Let b be a strictly positive constant and consider the problem: find $u(x, t)$ such that

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=0, \quad 0<x<1, \quad 0<t \\
& u(x, 0)=u_{0}(x), \quad 0<x<1, \\
& u(0, t)=u(1, t), \quad t>0
\end{aligned}
$$

where u_{0} is a smooth function. Let J and N be positive integers, $x_{i}=i h$ where $h=1 / J$ and $t_{n}=n \tau$ where $\tau=1 / N$. Also denote by u_{j}^{n} the approximation of $u\left(x_{j}, t_{n}\right)$.

Set $u_{j}^{0}=u_{0}\left(x_{j}\right)$ and define reccursively u_{j}^{n} by the following Lax-Friedrichs scheme

$$
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{\tau b}{2 h}\left(u_{j+1}^{n}-u_{j-1}^{n}\right), \quad j=1, \ldots, J .
$$

Show that for all $j=1, \ldots, J$ and $n \geq 0$

$$
\min _{i}\left(u_{i}^{0}\right) \leq u_{j}^{n} \leq \max _{i}\left(u_{i}^{0}\right)
$$

provided $\frac{\tau b}{h} \leq 1$.
Problem 2. Below, C_{i}, for $i=1,2,3$ denote positive constants. For $f \in L^{2}(\Omega)$, we consider solutions $u \in H^{1}(\Omega)$ to

$$
\begin{equation*}
A(u, \phi)=\int f \phi, \text { for all } \phi \in H^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

Here Ω is a polyhedral domain in \mathbb{R}^{n} and $A(\cdot, \cdot)$ is a (non-coercive) bounded bilinear form on $H^{1}(\Omega)$. It is assumed that A satisfies a Gärding inequality, i.e., there are positive constants K and α satisfying

$$
\begin{equation*}
\alpha\|v\|_{H^{1}(\Omega)}^{2} \leq A(v, v)+K\|v\|_{L^{2}(\Omega)}^{2}, \quad \text { for all } v \in H^{1}(\Omega) \tag{2.2}
\end{equation*}
$$

We assume that solutions of (2.1) and those of the adjoint problem: $u \in H^{1}(\Omega)$ satisfying

$$
\begin{equation*}
A(\phi, u)=\int_{\Omega} f \phi, \text { for all } \phi \in H^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

exist, are unique and satisfy

$$
\|u\|_{H^{2}(\Omega)} \leq C_{1}\|f\|_{L^{2}(\Omega)}
$$

We finally assume that $\left\{V_{h}\right\}, h \in(0,1]$ is collection of conforming finite element subspaces satisfying the standard approximation properties and consider the finite element approximation: $u_{h} \in V_{h}$ satisfying

$$
\begin{equation*}
A\left(u_{h}, \theta\right)=\int_{\Omega} f \theta, \text { for all } \theta \in V_{h} \tag{2.4}
\end{equation*}
$$

(a) Suppose that u solves (2.1) and $u_{h} \in V_{h}$ satisfies (2.4) (we do not assume that u_{h} is unique). Show that

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C_{2} h\left\|u-u_{h}\right\|_{H^{1}(\Omega)}
$$

(b) Use (2.2) and Part (a) to show that there is an $h_{0}>0$ such that if $h \leq h_{0}$,

$$
\frac{\alpha}{2}\left\|u-u_{h}\right\|_{H^{1}(\Omega)}^{2} \leq A\left(u-u_{h}, u-u_{h}\right)
$$

(c) Use Part (b) to show that the solutions of (2.4) are unique when $h \leq h_{0}$. This also implies existence.
(d) Prove that the unique solution (when $h \leq h_{0}$) of (2.4) satisfies

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C_{3} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{H^{1}(\Omega)} .
$$

Problem 3. For this problem, for $M \geq 1, S_{M}$ is a finite dimensional subspace of $H^{2}(\Omega)$ with $\Omega=(0,1)$. Also, we are given linear operators, $P_{c}: H^{2}(\Omega) \rightarrow S_{M}$ and $P_{M}: L^{2}(\Omega) \rightarrow$ S_{M}. We further assume that there is a constant C_{1} not depending on M, u or s and satisfying

$$
\left|\left(I-P_{M}\right) u\right|_{H^{s}(\Omega)} \leq C_{1} M^{s-2}|u|_{H^{2}(\Omega)}, \quad \text { for all } u \in H^{2}(\Omega), s=\{0,1,2\}
$$

Here $|\cdot|_{H^{s}(\Omega)}$ denotes the $H^{s}(\Omega)$ semi-norm. We set $\Omega_{M}=(0, M)$. For u defined on Ω, we define $\hat{u}(x)$ for $x \in \Omega_{M}$ by $\hat{u}(x)=u(x / M)$ and define

$$
\widehat{P}_{M}(\hat{u})=\widehat{P_{M} u} \quad \text { and } \quad \widehat{P_{c}}(\hat{u})=\widehat{P_{c} u} .
$$

We finally assume there is a constant C_{2} (not depending on M) satisfying

$$
\left\|\widehat{P}_{c} \hat{u}\right\|_{L^{2}\left(\Omega_{M}\right)} \leq C_{2}\|\hat{u}\|_{H^{2}\left(\Omega_{M}\right)}, \quad \text { for all } \hat{u} \in H^{2}\left(\Omega_{M}\right)
$$

and that $\widehat{P}_{c} \widehat{P}_{M}=\widehat{P}_{M}$.
(a) Derive a relationship between $|u|_{H^{s}(\Omega)}$ and $|\hat{u}|_{H^{s}\left(\Omega_{M}\right)}$.
(b) Show that there is a constant C_{3} not depending on M satisfying

$$
\left\|\left(I-\widehat{P}_{M}\right) \hat{u}\right\|_{H^{2}\left(\Omega_{M}\right)} \leq C|\hat{u}|_{H^{2}\left(\Omega_{M}\right)} .
$$

(c) Show that there is a constant C_{3} not depending on M satisfying

$$
\left\|\left(I-P_{c}\right) u\right\|_{L^{2}(\Omega)} \leq C_{3} M^{-2}|u|_{H^{2}(\Omega)}, \quad \text { for all } u \in H^{2}(\Omega)
$$

