Applied/Numerical Analysis Qualifying Exam

January 12, 2016

Cover Sheet – Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name___

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part January 12, 2016

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Recall that the DFT and inverse DFT are given by $\hat{y}_k = \sum_{j=0}^{n-1} y_j \bar{w}^{jk}$ and $y_j = \frac{1}{n} \sum_{j=0}^{n-1} \hat{y}_k w^{jk}$, where $w = e^{2\pi i/n}$.

- (a) State and prove the Convolution Theorem for the DFT.
- (b) Let a, x, y be column vectors with entries $a_0, \ldots, a_{n-1}, x_0, \ldots, x_{n-1}, y_0, \ldots, y_{n-1}$. In addition, let α, ξ and η be n-periodic sequences, the entries for one period, $k = 0, \ldots, n-1$, being those of a, x, and y, respectively. Consider the circulant matrix

$$A = \begin{pmatrix} a_0 & a_{n-1} & a_{n-2} & \cdots & a_1 \\ a_1 & a_0 & a_{n-1} & \cdots & a_2 \\ a_2 & a_1 & a_0 & \cdots & a_3 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0 \end{pmatrix}$$

Show that the matrix equation Ax = y is equivalent to convolution $\eta = \alpha * \xi$.

(c) Use parts (a) and (b) above to find the eigenvalues of

$$A = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}.$$

Problem 2. Let $Lu = -(e^x u')'$, u(0) = 0, u'(1) = 0.

- (a) Find the Green's function G(x, y) for $Lu = -(e^x u')' = f$, u(0) = 0, u'(1) = 0.
- (b) Why is $Kf(x) = \int_0^1 G(x, y)f(y)dy$ compact? (One sentence will do.)
- (c) Consider the eigenvalue problem $Lu = \lambda u$, u(0) = 0, u'(1) = 0. Show that the (orthonormal) set of eigenfunctions for L form a complete set in $L^2[0, 1]$.

Problem 3. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) State and prove the Closed Range Theorem.
- (b) Let $\mathcal{H} = L^2[0,1]$. Define the kernel $k(x,y) := x^2 y^9$ and let $Ku(x) = \int_0^1 k(x,y)u(y)dy$. Show the K is in $\mathcal{C}(L^2[0,1])$.
- (c) Let $L = I \lambda K$, $\lambda \in \mathbb{C}$, with K as defined in part (b) above. Find all λ for which Lu = f can be solved for all $f \in L^2[0, 1]$. For these values of λ , find the resolvent $(I \lambda K)^{-1}$.

Problem 4. Recall that a *geodesic* on a surface provides the path of shortest distance between two points on a surface. Let S be the unit sphere in \mathbb{R}^3 . In the coordinates shown above, the differential arc length is given by $ds = \sqrt{d\theta^2 + \sin^2(\theta)}d\varphi^2$. If $P_0 = (\theta_0, 0)$ and $P_1 = (\theta_1, 0), 0 < \theta_0 < \theta_1 < \pi$, show that the geodesic is the arc of the great circle given by $\theta_0 \leq \theta \leq \theta_1, \varphi = 0$. Hint: describe curves joining the two points by $\varphi = u(\theta)$, where $u \in C^2[\theta_0, \theta_1]$ and satisfies $u(\theta_0) = u(\theta_1) = 0$. Minimize the arc-length functional.

Applied/Numerical Analysis Qualifying Exam

January 12, 2016

Cover Sheet – Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name___

NUMERICAL ANALYSIS PART

January 12, 2016

Problem 1. Let b be a strictly positive constant and consider the problem: find u(x,t) such that

$$\begin{aligned} &\frac{\partial u}{\partial t} + b\frac{\partial u}{\partial x} = 0, \quad 0 < x < 1, \ 0 < t\\ &u(x,0) = u_0(x), \quad 0 < x < 1, \\ &u(0,t) = u(1,t), \ t > 0 \end{aligned}$$

where u_0 is a smooth function. Let J and N be positive integers, $x_i = ih$ where h = 1/Jand $t_n = n\tau$ where $\tau = 1/N$. Also denote by u_i^n the approximation of $u(x_i, t_n)$.

Set $u_i^0 = u_0(x_j)$ and define recursively u_i^n by the following Lax-Friedrichs scheme

$$u_j^{n+1} = \frac{1}{2}(u_{j+1}^n + u_{j-1}^n) - \frac{\tau b}{2h}(u_{j+1}^n - u_{j-1}^n), \quad j = 1, ..., J.$$

Show that for all j = 1, ..., J and $n \ge 0$

$$\min_{i}(u_i^0) \le u_j^n \le \max_{i}(u_i^0)$$

provided $\frac{\tau b}{h} \leq 1$.

Problem 2. Below, C_i , for i = 1, 2, 3 denote positive constants. For $f \in L^2(\Omega)$, we consider solutions $u \in H^1(\Omega)$ to

(2.1)
$$A(u,\phi) = \int f\phi, \text{ for all } \phi \in H^1(\Omega).$$

Here Ω is a polyhedral domain in \mathbb{R}^n and $A(\cdot, \cdot)$ is a (non-coercive) bounded bilinear form on $H^1(\Omega)$. It is assumed that A satisfies a Gärding inequality, i.e., there are positive constants K and α satisfying

(2.2)
$$\alpha \|v\|_{H^1(\Omega)}^2 \le A(v,v) + K \|v\|_{L^2(\Omega)}^2, \text{ for all } v \in H^1(\Omega).$$

We assume that solutions of (2.1) and those of the adjoint problem: $u \in H^1(\Omega)$ satisfying

(2.3)
$$A(\phi, u) = \int_{\Omega} f\phi, \text{ for all } \phi \in H^{1}(\Omega),$$

exist, are unique and satisfy

$$||u||_{H^2(\Omega)} \le C_1 ||f||_{L^2(\Omega)}.$$

We finally assume that $\{V_h\}$, $h \in (0, 1]$ is collection of conforming finite element subspaces satisfying the standard approximation properties and consider the finite element approximation: $u_h \in V_h$ satisfying

(2.4)
$$A(u_h, \theta) = \int_{\Omega} f\theta, \text{ for all } \theta \in V_h.$$

(a) Suppose that u solves (2.1) and $u_h \in V_h$ satisfies (2.4) (we do not assume that u_h is unique). Show that

$$||u - u_h||_{L^2(\Omega)} \le C_2 h ||u - u_h||_{H^1(\Omega)}$$

(b) Use (2.2) and Part (a) to show that there is an $h_0 > 0$ such that if $h \leq h_0$,

$$\frac{\alpha}{2} \|u - u_h\|_{H^1(\Omega)}^2 \le A(u - u_h, u - u_h).$$

- (c) Use Part (b) to show that the solutions of (2.4) are unique when $h \leq h_0$. This also implies existence.
- (d) Prove that the unique solution (when $h \leq h_0$) of (2.4) satisfies

$$||u - u_h||_{H^1(\Omega)} \le C_3 \inf_{v_h \in V_h} ||u - v_h||_{H^1(\Omega)}.$$

Problem 3. For this problem, for $M \ge 1$, S_M is a finite dimensional subspace of $H^2(\Omega)$ with $\Omega = (0, 1)$. Also, we are given linear operators, $P_c : H^2(\Omega) \to S_M$ and $P_M : L^2(\Omega) \to S_M$. We further assume that there is a constant C_1 not depending on M, u or s and satisfying

$$|(I - P_M)u|_{H^s(\Omega)} \le C_1 M^{s-2} |u|_{H^2(\Omega)}, \text{ for all } u \in H^2(\Omega), \ s = \{0, 1, 2\}.$$

Here $|\cdot|_{H^s(\Omega)}$ denotes the $H^s(\Omega)$ semi-norm. We set $\Omega_M = (0, M)$. For u defined on Ω , we define $\hat{u}(x)$ for $x \in \Omega_M$ by $\hat{u}(x) = u(x/M)$ and define

$$\widehat{P}_M(\widehat{u}) = \widehat{P_M u}$$
 and $\widehat{P}_c(\widehat{u}) = \widehat{P_c u}$.

We finally assume there is a constant C_2 (not depending on M) satisfying

$$\|\hat{P}_c\hat{u}\|_{L^2(\Omega_M)} \le C_2 \|\hat{u}\|_{H^2(\Omega_M)}, \quad \text{for all } \hat{u} \in H^2(\Omega_M),$$

and that $\widehat{P}_c \widehat{P}_M = \widehat{P}_M$.

- (a) Derive a relationship between $|u|_{H^s(\Omega)}$ and $|\hat{u}|_{H^s(\Omega_M)}$.
- (b) Show that there is a constant C_3 not depending on M satisfying

$$||(I - P_M)\hat{u}||_{H^2(\Omega_M)} \le C|\hat{u}|_{H^2(\Omega_M)}.$$

(c) Show that there is a constant C_3 not depending on M satisfying

$$||(I - P_c)u||_{L^2(\Omega)} \le C_3 M^{-2} |u|_{H^2(\Omega)}, \text{ for all } u \in H^2(\Omega)$$