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Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your
work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Recall that the DFT and inverse DFT are given by ŷk =
∑n−1

j=0 yjw̄
jk and

yj = 1
n

∑n−1
j=0 ŷkw

jk, where w = e2πi/n.

(a) State and prove the Convolution Theorem for the DFT.
(b) Let a, x, y be column vectors with entries a0, . . . , an−1, x0, . . . , xn−1, y0, . . . , yn−1.

In addition, let α, ξ and η be n-periodic sequences, the entries for one period,
k = 0, . . . , n− 1, being those of a, x, and y, respectively. Consider the circulant
matrix

A =


a0 an−1 an−2 · · · a1

a1 a0 an−1 · · · a2

a2 a1 a0 · · · a3
...

...
... · · · ...

an−1 an−2 an−3 · · · a0

 .

Show that the matrix equation Ax = y is equivalent to convolution η = α ∗ ξ.
(c) Use parts (a) and (b) above to find the eigenvalues of

A =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 .

Problem 2. Let Lu = −(exu′)′, u(0) = 0, u′(1) = 0.

(a) Find the Green’s function G(x, y) for Lu = −(exu′)′ = f , u(0) = 0, u′(1) = 0.

(b) Why is Kf(x) =
∫ 1

0
G(x, y)f(y)dy compact? (One sentence will do.)

(c) Consider the eigenvalue problem Lu = λu, u(0) = 0, u′(1) = 0. Show that the
(orthonormal) set of eigenfunctions for L form a complete set in L2[0, 1].

Problem 3. Let H be a (separable) Hilbert space and let C(H) be the set of compact
operators on H.

(a) State and prove the Closed Range Theorem.

(b) Let H = L2[0, 1]. Define the kernel k(x, y) := x2y9 and letKu(x) =
∫ 1

0
k(x, y)u(y)dy.

Show the K is in C(L2[0, 1]).
(c) Let L = I −λK, λ ∈ C, with K as defined in part (b) above. Find all λ for which

Lu = f can be solved for all f ∈ L2[0, 1]. For these values of λ, find the resolvent
(I − λK)−1.
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Problem 4. Recall that a geodesic on a surface provides the path of shortest distance
between two points on a surface. Let S be the unit sphere in R3. In the coordinates shown

above, the differential arc length is given by ds =
√
dθ2 + sin2(θ)dϕ2. If P0 = (θ0, 0) and

P1 = (θ1, 0), 0 < θ0 < θ1 < π, show that the geodesic is the arc of the great circle given
by θ0 ≤ θ ≤ θ1, ϕ = 0. Hint: describe curves joining the two points by ϕ = u(θ), where
u ∈ C2[θ0, θ1] and satisfies u(θ0) = u(θ1) = 0. Minimize the arc-length functional.
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Problem 1. Let b be a strictly positive constant and consider the problem: find u(x, t)
such that

∂u

∂t
+ b

∂u

∂x
= 0, 0 < x < 1, 0 < t

u(x, 0) = u0(x), 0 < x < 1,

u(0, t) = u(1, t), t > 0

where u0 is a smooth function. Let J and N be positive integers, xi = ih where h = 1/J
and tn = nτ where τ = 1/N . Also denote by unj the approximation of u(xj, tn).

Set u0
j = u0(xj) and define reccursively unj by the following Lax-Friedrichs scheme

un+1
j =

1

2
(unj+1 + unj−1)− τb

2h
(unj+1 − unj−1), j = 1, ..., J.

Show that for all j = 1, ..., J and n ≥ 0

min
i

(u0
i ) ≤ unj ≤ max

i
(u0

i )

provided τb
h
≤ 1.

Problem 2. Below, Ci, for i = 1, 2, 3 denote positive constants. For f ∈ L2(Ω), we
consider solutions u ∈ H1(Ω) to

(2.1) A(u, φ) =

∫
fφ, for all φ ∈ H1(Ω).

Here Ω is a polyhedral domain in Rn and A(·, ·) is a (non-coercive) bounded bilinear form
on H1(Ω). It is assumed that A satisfies a Gärding inequality, i.e., there are positive
constants K and α satisfying

(2.2) α‖v‖2
H1(Ω) ≤ A(v, v) +K‖v‖2

L2(Ω), for all v ∈ H1(Ω).

We assume that solutions of (2.1) and those of the adjoint problem: u ∈ H1(Ω) satisfying

(2.3) A(φ, u) =

∫
Ω

fφ, for all φ ∈ H1(Ω),

exist, are unique and satisfy

‖u‖H2(Ω) ≤ C1‖f‖L2(Ω).

We finally assume that {Vh}, h ∈ (0, 1] is collection of conforming finite element sub-
spaces satisfying the standard approximation properties and consider the finite element
approximation: uh ∈ Vh satisfying

(2.4) A(uh, θ) =

∫
Ω

fθ, for all θ ∈ Vh.
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(a) Suppose that u solves (2.1) and uh ∈ Vh satisfies (2.4) (we do not assume that uh is
unique). Show that

‖u− uh‖L2(Ω) ≤ C2h‖u− uh‖H1(Ω).

(b) Use (2.2) and Part (a) to show that there is an h0 > 0 such that if h ≤ h0,
α

2
‖u− uh‖2

H1(Ω) ≤ A(u− uh, u− uh).

(c) Use Part (b) to show that the solutions of (2.4) are unique when h ≤ h0. This also
implies existence.

(d) Prove that the unique solution (when h ≤ h0) of (2.4) satisfies

‖u− uh‖H1(Ω) ≤ C3 inf
vh∈Vh

‖u− vh‖H1(Ω).

Problem 3. For this problem, for M ≥ 1, SM is a finite dimensional subspace of H2(Ω)
with Ω = (0, 1). Also, we are given linear operators, Pc : H2(Ω)→ SM and PM : L2(Ω)→
SM . We further assume that there is a constant C1 not depending on M , u or s and
satisfying

|(I − PM)u|Hs(Ω) ≤ C1M
s−2|u|H2(Ω), for all u ∈ H2(Ω), s = {0, 1, 2}.

Here | · |Hs(Ω) denotes the Hs(Ω) semi-norm. We set ΩM = (0,M). For u defined on Ω,
we define û(x) for x ∈ ΩM by û(x) = u(x/M) and define

P̂M(û) = P̂Mu and P̂c(û) = P̂cu.

We finally assume there is a constant C2 (not depending on M) satisfying

‖P̂cû‖L2(ΩM ) ≤ C2‖û‖H2(ΩM ), for all û ∈ H2(ΩM),

and that P̂cP̂M = P̂M .

(a) Derive a relationship between |u|Hs(Ω) and |û|Hs(ΩM ).
(b) Show that there is a constant C3 not depending on M satisfying

‖(I − P̂M)û‖H2(ΩM ) ≤ C|û|H2(ΩM ).

(c) Show that there is a constant C3 not depending on M satisfying

‖(I − Pc)u‖L2(Ω) ≤ C3M
−2|u|H2(Ω), for all u ∈ H2(Ω).
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