APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER Applied Analysis Part, 2 hours
 August 8, 2018

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let H be the Sobolev space $H=H_{0}^{1}[0,1]:=\left\{f \in L^{2}[0,1]: f^{\prime} \in L^{2}[0,1]\right.$ and $f(0)=$ $f(1)=0\}$, where $\langle f, g\rangle_{H}:=\int_{0}^{1} f^{\prime}(x) g^{\prime}(x) d x$. You may assume that H is a Hilbert space and that if $f \in H$, then $f \in C[0,1]$.
(a) State and prove the Riesz Representation Theorem.
(b) Show that if $f \in H$, then $\|f\|_{C[0,1]} \leq\|f\|_{H}$.
(c) Let $f \in C[0,1]$ and let the "delta" functional $\delta_{x}(f)=f(x)$. Use parts (a) and (b) to show that there exists $G(x, \cdot) \in H$ such that $f(x)=\langle f, G(x, \cdot)\rangle_{H}$ for all $f \in H$. Verify that $G(x, y)=$ $G(y, x)$. (Hint: Let $f(\cdot)=G(y, \cdot)$.)
(d) Let $X:=\left\{x_{1}<x_{2}<\cdots<x_{n}\right\} \subset \mathbb{R}$. Define the $n \times n$ matrix A by $A_{j, k}:=G\left(x_{j}, x_{k}\right)$. If A is invertible, show that there exists a unique $s(x)=\sum_{k=1}^{n} c_{k} G\left(x, x_{k}\right) \in H$ such that s interpolates f on X - i.e., $s\left(x_{j}\right)=f\left(x_{j}\right), j=1, \ldots, n$.

Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}^{\prime} be the corresponding set of distributions.
(a) Define convergence in \mathcal{D} and \mathcal{D}^{\prime}.
(b) Let $\phi \in \mathcal{D}$ and define $\phi_{h}(x):=(\phi(x)-\phi(x-h)) / h$. Show that, in the sense of $\mathcal{D}, \lim _{h \rightarrow 0} \phi_{h}=\phi^{\prime}$. (Hint: apply Taylor's formula to $\phi_{h}^{(n)}-\phi^{(n+1)}$.)
(c) Let $T \in \mathcal{D}^{\prime}$ and define $T_{h}=(T(x+h)-T(x)) / h$. Show that, in the sense of distributions, $\lim _{h \rightarrow 0} T_{h}=T^{\prime}$.
(d) Use (c) to show that if $T(x)=\left\{\begin{array}{ll}1 & x \leq 0 \\ 0 & x>0,\end{array}\right.$ then $T^{\prime}(x)=-\delta(x)$.

Problem 3. Let $k(x, y)=x^{4} y^{12}$ and consider the operator $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$.
(a) Show that K is a Hilbert-Schmidt operator and that $\|K\|_{\text {op }} \leq 1 / 15$.
(b) State the Fredholm Alternative for the operator $L=I-\lambda K$. Explain why it applies in this case. Find all values of λ such that $L u=f$ has a unique solution for all $f \in L^{2}[0,1]$.
(c) Use a Neumann series to find the resolvent $(I-\lambda K)^{-1}$ for λ small. Sum the series to find the resolvent.

Problem 4. Consider the one dimensional heat equation, $u_{t}=u_{x x}$, with $u(x, 0)=f(x)$, where $-\infty<x<\infty$ and $0<t<\infty$. Use Fourier transforms to show that the solution $u(x, t)$ is given by

$$
u(x, t)=\int_{\mathbb{R}} K(x-y, t) f(y) d y, K(x-y, t)=(4 \pi t)^{-1 / 2} e^{-(x-y)^{2} / 4 t}
$$

You may use any consistent Fourier transform convention ${ }^{1}$ and any of the standard Fourier transform properties. You are also given that $\int_{-\infty}^{\infty} e^{-u^{2} \pm i v u} d u=\sqrt{\pi} e^{-v^{2} / 4}$.

[^0]
[^0]: ${ }^{1}$ For example, $\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x \& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{i x \xi} d x$, or $\widehat{f}(\xi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i x \xi} d x \& f(x)=$ $\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{-i x \xi} d x$.

