APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER Applied Analysis Part, 2 hours August 8, 2018

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let H be the Sobolev space $H = H_0^1[0,1] := \{f \in L^2[0,1] : f' \in L^2[0,1] \text{ and } f(0) =$ f(1) = 0, where $\langle f, g \rangle_H := \int_0^1 f'(x)g'(x)dx$. You may assume that H is a Hilbert space and that if $f \in H$, then $f \in C[0, 1]$.

- (a) State and prove the Riesz Representation Theorem.
- (b) Show that if $f \in H$, then $||f||_{C[0,1]} \leq ||f||_{H}$.
- (c) Let $f \in C[0,1]$ and let the "delta" functional $\delta_x(f) = f(x)$. Use parts (a) and (b) to show that there exists $G(x, \cdot) \in H$ such that $f(x) = \langle f, G(x, \cdot) \rangle_H$ for all $f \in H$. Verify that G(x, y) =G(y, x). (Hint: Let $f(\cdot) = G(y, \cdot)$.)
- (d) Let $X := \{x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}$. Define the $\underline{n \times n}$ matrix A by $A_{j,k} := G(x_j, x_k)$. If A is invertible, show that there exists a unique $s(x) = \sum_{k=1}^{n} c_k G(x, x_k) \in H$ such that s interpolates $f \text{ on } X - \text{i.e.}, \ s(x_i) = f(x_i), \ j = 1, \dots, n.$

Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Let $\phi \in \mathcal{D}$ and define $\phi_h(x) := (\phi(x) \phi(x-h))/h$. Show that, in the sense of \mathcal{D} , $\lim_{h \to 0} \phi_h = \phi'$. (Hint: apply Taylor's formula to $\phi_h^{(n)} - \phi^{(n+1)}$.) (c) Let $T \in \mathcal{D}'$ and define $T_h = (T(x+h) - T(x))/h$. Show that, in the sense of distributions,
- $\lim_{h \to 0} T_h = T'.$

(d) Use (c) to show that if
$$T(x) = \begin{cases} 1 & x \le 0 \\ 0 & x > 0, \end{cases}$$
 then $T'(x) = -\delta(x)$.

Problem 3. Let $k(x,y) = x^4 y^{12}$ and consider the operator $Ku(x) = \int_0^1 k(x,y)u(y)dy$.

- (a) Show that K is a Hilbert-Schmidt operator and that $||K||_{op} \leq 1/15$.
- (b) State the Fredholm Alternative for the operator $L = I \lambda K$. Explain why it applies in this case. Find all values of λ such that Lu = f has a unique solution for all $f \in L^2[0, 1]$.
- (c) Use a Neumann series to find the resolvent $(I \lambda K)^{-1}$ for λ small. Sum the series to find the resolvent.

Problem 4. Consider the one dimensional heat equation, $u_t = u_{xx}$, with u(x,0) = f(x), where $-\infty < x < \infty$ and $0 < t < \infty$. Use Fourier transforms to show that the solution u(x,t) is given by

$$u(x,t) = \int_{\mathbb{R}} K(x-y,t)f(y)dy, \ K(x-y,t) = (4\pi t)^{-1/2}e^{-(x-y)^2/4t}$$

You may use any consistent Fourier transform convention¹ and any of the standard Fourier transform properties. You are also given that $\int_{-\infty}^{\infty} e^{-u^2 \pm ivu} du = \sqrt{\pi} e^{-v^2/4}$.

¹For example, $\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx \& f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widehat{f}(\xi)e^{ix\xi}dx$, or $\widehat{f}(\xi) = \frac{1}{2\pi}\int_{-\infty}^{\infty} f(x)e^{ix\xi}dx \& f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} f(x)e^{ix\xi}dx$ $\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{-ix\xi} dx.$