APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

August 6, 2019
Applied Analysis Part, 2 hours

Name: \qquad

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.
Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let $f \in C[0,1], \delta>0$, and $\omega(f, \delta)$ be the modulus of continuity for f.
(a) Let $\Delta=\left\{x_{0}=0<x_{1}<\cdots<x_{n}=1\right\}$ be a knot sequence with norm $\|\Delta\|=\max \left|x_{j}-x_{j+1}\right|$, $j=0, \ldots, n-1$. If s_{f} is the linear spline that interpolates f at the x_{j} 's, show that $\left\|f-s_{f}\right\|_{\infty} \leq$ $\omega(f,\|\Delta\|)$.
(b) Using part (a) and the fact that the continuous functions are dense in $L^{1}[0,1]$, prove the Riemann-Lebesgue Lemma: $\lim _{|\lambda| \rightarrow \infty} \int_{0}^{1} g(x) e^{i \lambda x} d x=0$, for all $g \in L^{1}[0,1]$.
Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}^{\prime} be the corresponding set of distributions.
(a) Define convergence in \mathcal{D} and \mathcal{D}^{\prime}.
(b) Consider a function $f \in C^{(1)}(\mathbb{R})$ such that both f and f^{\prime} are in $L^{1}(\mathbb{R})$, and $\int_{\mathbb{R}} f(x) d x=1$. Define the sequence of functions $\left\{T_{n}(x):=n^{2} f^{\prime}(n x): n=1,2, \ldots\right\}$. Show that, in the sense of distributions - i.e., in \mathcal{D}^{\prime}-, T_{n} converges to δ^{\prime}.
Problem 3. Let L be a closed, densely defined (possibly unbounded) linear operator on a Hilbert space \mathcal{H}, and let the range of L be dense in \mathcal{H}.
(a) Show that if there exists $C>0$ such that $\|L f\| \geq C\|f\|$ for all $f \in \mathcal{D}$, then L^{-1} is bounded.
(b) Use (a) to show that if $L=L^{*}$, then the spectrum of L is contained in \mathbb{R}.

Problem 4. Consider the boundary problem below::

$$
L[u]=\frac{d}{d x}\left(x \frac{d u}{d x}\right)=f, \text { where } \mathcal{D}=\left\{u \in L^{2}[1, e]: L u \in L^{2}[1, e], u^{\prime}(1)=0, u(e)=0\right\},
$$

(a) Find the Green's function $g(x, y)$ for the problem, given that $1, \log (x)$ solve $L[u]=0$.
(b) Show that $K f(x)=\int_{1}^{e} g(x, y) f(y) d y$ is self adjoint, and briefly explain why it's compact. Show directly from the spectral theory for compact operators that the orthonormal set of eigenfunctions for L is complete in $L^{2}[1, e]$. (Do not solve the eigenvalue problem.)

