APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

August 6, 2019

Applied Analysis Part, 2 hours

Name:

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let $f \in C[0,1]$, $\delta > 0$, and $\omega(f,\delta)$ be the modulus of continuity for f.

- (a) Let $\Delta = \{x_0 = 0 < x_1 < \cdots < x_n = 1\}$ be a knot sequence with norm $\|\Delta\| = \max |x_j x_{j+1}|$, $j = 0, \ldots, n-1$. If s_f is the linear spline that interpolates f at the x_j 's, show that $\|f s_f\|_{\infty} \leq \omega(f, \|\Delta\|)$.
- (b) Using part (a) and the fact that the continuous functions are dense in $L^1[0,1]$, prove the Riemann-Lebesgue Lemma: $\lim_{|\lambda|\to\infty} \int_0^1 g(x)e^{i\lambda x}dx = 0$, for all $g \in L^1[0,1]$.

Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Consider a function $f \in C^{(1)}(\mathbb{R})$ such that both f and f' are in $L^1(\mathbb{R})$, and $\int_{\mathbb{R}} f(x)dx = 1$. Define the sequence of functions $\{T_n(x) := n^2 f'(nx) : n = 1, 2, \ldots\}$. Show that, in the sense of distributions — i.e., in \mathcal{D}' —, T_n converges to δ' .

Problem 3. Let L be a closed, densely defined (possibly unbounded) linear operator on a Hilbert space \mathcal{H} , and let the range of L be dense in \mathcal{H} .

- (a) Show that if there exists C > 0 such that $||Lf|| \ge C||f||$ for all $f \in \mathcal{D}$, then L^{-1} is bounded.
- (b) Use (a) to show that if $L = L^*$, then the spectrum of L is contained in \mathbb{R} .

Problem 4. Consider the boundary problem below::

$$L[u] = \frac{d}{dx} \left(x \frac{du}{dx} \right) = f, \text{ where } \mathcal{D} = \{ u \in L^2[1, e] \colon Lu \in L^2[1, e], u'(1) = 0, u(e) = 0 \}.$$

- (a) Find the Green's function g(x, y) for the problem, given that $1, \log(x)$ solve L[u] = 0.
- (b) Show that $Kf(x) = \int_{1}^{e} g(x, y)f(y)dy$ is self adjoint, and briefly explain why it's compact. Show *directly* from the spectral theory for compact operators that the orthonormal set of eigenfunctions for L is complete in $L^{2}[1, e]$. (Do not solve the eigenvalue problem.)