Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 13, 2021

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Give an example of a function in \mathcal{D} .
- (c) Show that $\psi \in \mathcal{D}$ has the form $\psi(x) = x^2 \phi(x)$ for some $\phi \in \mathcal{D}$ if and only if $\psi(0) = 0$ and $\psi'(0) = 0$.
- (d) Use 2(c) to find all $T \in \mathcal{D}'$ that satisfy $x^2 T(x) = 0$.

Problem 2. Let \mathcal{P} be the set of all polynomials.

- (a) State and sketch a proof of the Weierstrass approximation theorem.
- (b) let $\mathcal{H} = L^2_w[0,1]$, where the inner product is $\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)}w(x)dx$ and where $w \in C[0,1], w(x) \ge c > 0$ on [0,1]. Show that \mathcal{P} is dense in $L^2_w[0,1]$. (You may use the density of C[0,1] in $L^2[0,1]$.)
- (c) Let $\mathcal{U} := \{p_n\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the Gram-Schmidt process. Show that \mathcal{U} is a complete set in $L^2_w[0,1]$.

Problem 3. Suppose that K is a compact operator and $Tu(x) := \int_{-\infty}^{\infty} e^{-|x-y|^2} u(y) dy$.

- (a) Show that if $\{\phi_j\}_{j=1}^{\infty}$ is an orthonormal set, then $\lim_{j\to\infty} K\phi_j = 0$.
- (b) Show that T is a bounded operator on $L^2(\mathbb{R})$.
- (c) The set $\phi_j = \chi_{[j,j+1]}$ is an orthonormal basis for $L^2(\mathbb{R})$. Use translation invariance to show that $||T\phi_j|| = ||T\phi_0||$.
- (d) Show that T is *not* compact.

Problem 4. Let $Lu = x^2u'' + 2xu' - 2u$. $D_L = \{u \in L^2[1, 2]], u'(1) = 0, u(2) = 0\}$. You are given that x, x^{-2} are homogenous solutions.

- (a) Show that $L = L^*$.
- (b) Find the Green's function G. Show that $Ku(x) = \int_1^2 G(x, y)u(y)dy$ is compact and selfadjoint.
- (c) State the spectral theorem for compact, self-adjoint operators. Use it to show that the (normalized) eigenfunctions of the eigenvalue problem $Lu + \lambda u = 0$, $u \in D_L$, form a complete orthonormal set in $L^2[1, 2]$.