Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 5, 2022

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and in $1\mathcal{D}'$.
- (b) Give an example of a function in \mathcal{D} .
- (c) Show that $\psi \in \mathcal{D}$ has the form $\psi(x) = (x\phi(x))'$ for some $\phi \in \mathcal{D}$ if and only if $\int_{-\infty}^{\infty} \psi(x) dx = \int_{0}^{\infty} \psi(x) dx = 0.$
- (d) Use 2(c) to show that if $T \in \mathcal{D}'$ satisfies xT'(x) = 0, then $T(x) = \delta(x)$.

Problem 2. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the Banach space of bounded operators on \mathcal{H} . In addition, let $\mathcal{C}(\mathcal{H})$ be the subspace of $\mathcal{B}(\mathcal{H})$ comprising the compact operators on \mathcal{H} .

- (a) Show that $\mathcal{C}(\mathcal{H})$ is closed in $\mathcal{B}(\mathcal{H})$.
- (b) Show that if $L \in \mathcal{B}(\mathcal{H})$ has finite rank (i.e., the range of L is finite dimensional), then L is compact.
- (c) Let $\mathcal{H} = L^2[0,1]$. Show if k(x,y) is a Hilbert Schmidt kernel, then $Ku(x) = \int_0^1 k(x,y)u(y)dy$ is compact. (You may assume that $K \in \mathcal{B}(\mathcal{H})$.)

Problem 3. Let \mathcal{P} be the set of all polynomials in x.

- (a) State and sketch a proof of the Weierstrass approximation theorem.
- (b) Show that \mathcal{P} is dense in $L^2[0,1]$.
- (c) Let $S := \{p_n\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the Gram-Schmidt process. Show that S is a complete set in $L^2[0, 1]$.

Problem 4. Consider the self-adjoint operator Lu = -u'' having the domain $\mathcal{D}_L := \{u \in L^2[0,\infty) : u(0) = 0 \& Lu \in L^2[0,\infty)\}.$

- (a) Show that L has no eigenvalues $\lambda \in \mathbb{C} \setminus [0, \infty)$.
- (a) Assume that $\text{Im}\sqrt{\lambda} > 0$. Find the Green's function for L,

$$L_x g(x, y) - \lambda g(x, y) = \delta(x - y), \ \lambda \notin \ [0, \infty).$$

(c) Is g(x, y) a Hilbert-Schmidt kernel? Prove your answer.