Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 10, 2023

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) Consider $K \in \mathcal{C}(\mathcal{H})$. Show that if $\{\phi_n\}_{n=0}^{\infty}$ is an orthonormal set in \mathcal{H} , then $\lim_{n\to\infty} K\phi_n = 0$.
- (b) Suppose that $K \in \mathcal{C}(\mathcal{H})$ is self adjoint. Let $\lambda \neq 0$ be an eigenvalue of K. Show that the corresponding eigenspace is finite dimensional.
- (c) Given that $||K|| = \sup_{||u||=1} |\langle Ku, u \rangle|$, show that either ||K|| or -||K|| (or possibly both) is an eigenvalue of K.
- (d) *Briefly* explain how (b) and (c) are used to develop the spectral theory of compact self adjoint operators. (Two sentences will suffice.)

Problem 2. Let \mathcal{P} be the set of all polynomials.

- (a) State and sketch a proof of the Weierstrass approximation theorem.
- (b) let $\mathcal{H} = L^2_w[0,1]$, where the inner product is $\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)}w(x)dx$ and where $w \in C[0,1], w(x) \ge c > 0$ on [0,1]. Show that \mathcal{P} is dense in $L^2_w[0,1]$. (You may use the density of C[0,1] in $L^2[0,1]$.)
- (c) Let $\mathcal{U} := \{p_n\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the Gram-Schmidt process. Show that \mathcal{U} is a complete orthonormal set in $L^2_w[0,1]$.

Problem 3. Suppose that $Tu(x) := \int_{-\infty}^{\infty} e^{-|x-y|} u(y) dy$.

- (a) Show that T is a bounded operator on $L^2(\mathbb{R})$.
- (b) You are given that the set $\phi_j = \chi_{[j,j+1]}$ is an orthonormal basis for $L^2(\mathbb{R})$. Show that $||T\phi_j|| = ||T\phi_0||$.
- (c) Is T compact? Prove your answer.

Problem 4. Consider the operator Lu = -u'' defined on functions in $L^2[0,\infty)$ having u'' in $L^2[0,\infty)$ and satisfying the boundary condition that u'(0) = 0; that is, L has the domain

$$\mathcal{D}_L = \{ u \in L^2[0,\infty) \, | \, u'' \in L^2[0,\infty) \text{ and } u'(0) = 0 \}.$$

- (a) Find the Green's function $G(x, y; \lambda)$ for $-G'' \lambda G = \delta(x y)$, with $G'(0, y; \lambda) = 0$ and $\lambda \in \mathbb{C} \setminus [0, \infty)$.
- (b) Is G a Hilbert-Schmidt kernel? Prove your answer.