Applied/Numerical Analysis Qualifying Exam

January 6, 2014

Cover Sheet - Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Name

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part
 January 6, 2014

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let f be a continuous, 2π periodic function having the Fourier series $f(t)=$ $\sum_{k=-\infty}^{\infty} c_{k} e^{i k t}$. The trapezoidal rule for numerically finding $\int_{0}^{2 \pi} f(t) d t$ is given by

$$
Q_{n}(f)=\frac{2 \pi}{n} \sum_{k=0}^{n-1} f(2 \pi k / n)
$$

(a) Let $S_{m}(t)=\sum_{k=-m}^{m} c_{k} e^{i k t}$. Show that $Q_{n}\left(S_{n-1}\right)=\int_{0}^{2 \pi} f(t) d t$.
(b) Show that $\left|Q_{n}(f)-\int_{0}^{2 \pi} f(t) d t\right| \leq 2 \pi\left\|f-S_{n-1}\right\|_{C[0,2 \pi]}$.
(c) Suppose that $\left|c_{k}\right| \leq|k|^{-6}$ for all $k \neq 0$. Estimate $\left|Q_{n}(f)-\int_{0}^{2 \pi} f(t) d t\right|$.

Problem 2. Consider the Sturm-Liouville (S-L) problem

$$
u^{\prime \prime}=f, u^{\prime}(0)=0, u(1)+u^{\prime}(1)=0
$$

(a) Find the Green's function, $G(x, y)$, for this problem.
(b) Show that $G f(x)=\int_{0}^{1} G(x, y) f(y) d y$ is compact and self adjoint on $L^{2}[0,1]$.
(c) Show that the eigenfunctions of the eigenvalue problem $u^{\prime \prime}+\lambda u, u^{\prime}(0)=0, u(1)+$ $u^{\prime}(1)=0$ form a complete set orthogonal set in $L^{2}[0,1]$. (Hint: Show that the the null space of G is $\{0\}$.)

Problem 3. Find the first term of the asymptotic series for $F(x):=\int_{0}^{\infty} e^{x t-\frac{1}{2} t^{2}} d t, x \rightarrow+\infty$.
Problem 4. Let \mathcal{S} be Schwartz space and \mathcal{S}^{\prime} be the space of tempered distributions. In addition, let the Fourier and inverse Fourier transforms be given by

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \text { and } f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega
$$

(a) Define \mathcal{S} and give the semi-norm topology for it. In addition, define \mathcal{S}^{\prime}.
(b) Given that \mathcal{F} is a continuous bijection mapping $\mathcal{S} \rightarrow \mathcal{S}$, define the Fourier transform of a tempered distribution.
(c) Show that if $T \in \mathcal{S}^{\prime}$, then $\widehat{T^{(k)}}=(-i \omega)^{k} \widehat{T}$, where $k=1,2, \ldots$.
(d) Let $T(t)=\left\{\begin{array}{ll}1 & |t| \leq 1 \\ 0 & |t|>1\end{array}\right.$. Show that $T^{\prime}(t)=\delta(t+1)-\delta(t-1)$. Use (c) to find \widehat{T}.

