APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 9, 2020
Applied Analysis Part, 2 hours

Name: \qquad

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.
Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Consider $F(x):=\frac{x}{2}+\frac{1}{x}, 1 \leq x \leq 2$.
(a) State and prove the Contraction Mapping Theorem.
(b) Show that $F:[1,2] \rightarrow[1,2]$, that it is Lipschitz continuous on $[1,2]$, with Lipschitz constant less than or equal to $1 / 2$.
(c) Obviously, the fixed point is $\sqrt{2}$. If $x_{0}=2$, estimate the number of iterations needed to come within 0.001 of $\sqrt{2}$.
Problem 2. Let $p \in C^{(2)}[0,1], q \in C[0,1]$ be positive on $[0,1]$. Consider the operator $L u=-\left(p u^{\prime}\right)^{\prime}+q u$, where $\left.\left.\mathcal{D}_{L}:=\left\{u \in L^{2}[0,1]\right]: L u \in L^{2}[0,1]\right], u(0)=0 \& u^{\prime}(1)=0\right\}$.
(a) Show that L is self adjoint and positive definite.
(b) Explain why the Green's function $g(x, y)$ exists for this problem.
(b) Prove that the eigenfunctions of L contain a complete, orthonormal set with respect to $L^{2}[0,1]$.

Problem 3. Let \mathcal{H} be a Hilbert space, $\mathcal{C}(\mathcal{H})$ the compact operators \mathcal{H}, and $\mathcal{B}(\mathcal{H})$ be the bounded operators on \mathcal{H}.
(a) Prove that $\mathcal{C}(\mathcal{H})$ is a closed subspace of $\mathcal{B}(\mathcal{H})$.
(b) Let $\mathcal{H}=L^{2}[0,1]$. Use the result above to show that a Hilbert-Schmidt operator $K u(x)=$ $\int_{0}^{1} k(x, y) u(y) d y, k \in L^{2}([0,1] \times[0,1])$ is compact.

Problem 4. Let \mathcal{S} be Schwartz space and \mathcal{S}^{\prime} be the space of tempered distributions. The Fourier transform convention used here is $\mathcal{F}[f](\omega)=\widehat{f}(\omega):=\int_{\mathbb{R}} f(t) e^{i \omega t} d t, \mathcal{F}^{-1}[\widehat{f}](x)=f(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \widehat{f}(\omega) e^{-i \omega t} d \omega$.
(a) Sketch a proof: The Fourier transform \mathcal{F} is a continuous linear operator mapping \mathcal{S} into itself.
(b) Use the previous result to show that ${ }^{1}\langle\mathcal{F}[T](x), \phi(x)\rangle:=\langle T(x), \mathcal{F}[\phi](x)\rangle$ implies $\mathcal{F}[T] \in \mathcal{S}^{\prime}$.
(c) You are given that if $T \in \mathcal{S}^{\prime}$, then $\widehat{T^{(k)}}=(-i \omega)^{k} \widehat{T}$, where $k=1,2, \ldots$ Let T be the tent function $T(x)=1-|x|,|x| \leq 1$, and $T(x)=0$ otherwise. Find \widehat{T}. (Hint: What is $T^{\prime \prime}$?)

[^0]
[^0]: ${ }^{1}$ Here we are defining $\langle f, g\rangle:=\int_{\mathbb{R}} f(x) g(x) d x$. Note that there is no complex conjugate in this definition of $\langle f, g\rangle$.

