Applied Analysis Part January 11, 2022

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let ψ_j and ϕ_j , $j = 1, \ldots, n$, be in $L^2[0, 1]$. Assume the sets $\{\psi_j\}_{j=1}^n$ and $\{\phi_j\}_{j=1}^n$ are linearly independent. Consider the finite rank kernel $k(x,y) = \sum_{j=1}^{n} \psi_j(x) \overline{\phi}_j(y)$ and let $Ku(x) = \int_0^1 k(x, y)u(y)dy$. You are given that K is compact.

- (a) State and prove the Fredholm Alternative.
- (b) State the Closed Range Theorem.
- (c) Show that the equation $(I \lambda K)u = f$ has an L²-solution for all $f \in L^2[0, 1]$ if and only if $1/\overline{\lambda}$ is not an eigenvalue of the matrix A, where $A_{ik} = \langle \phi_i, \psi_k \rangle$.

Problem 2. Let both $K \in \mathcal{C}(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H})$ be self adjoint.

- (a) Show that $||L||_{op} = \sup_{||u||=1} |\langle Lu, u \rangle|$. (Hint: look at $\langle L(u+v), u+v \rangle \langle L(u-v), u-v \rangle$, then apply the polarization identity.)
- (b) Prove this: Either ||K|| or -||K|| is an eigenvalue of K.
- (c) Let $\mathcal{H} = L^2[01]$ and define the operator $M: L^2[0,1] \to L^2[0,1]$ by Mu(x) = xu(x). Show that $||M||_{op} = 1$. Is *M* compact? Prove your answer.

Problem 3. Suppose that $Lu = u'' + \lambda u$, with $\text{Dom}(L) = \{u \in L^2(-\infty, \infty) : Lu \in L^2(-\infty, \infty)\},\$ where $\lambda \in \mathbb{C} \setminus [0, \infty)$. In addition, choose $\mathrm{Im}\sqrt{\lambda} > 0$. Show that the Green's function for L is given by

$$g(x, y, \lambda) = \frac{-i}{2\sqrt{\lambda}} e^{i\sqrt{\lambda}|x-y|}$$

Problem 4. Consider the functions ϕ and ψ defined below:

$$\phi(x) = \begin{cases} (|x|-1)^2(2|x|+1) & |x| \le 1\\ 0 & |x| > 1 \end{cases}, \qquad \psi(x) = \begin{cases} x(|x|-1)^2 & |x| \le 1\\ 0 & |x| > 1 \end{cases}.$$

Recall that for $n \ge 2$ and $0 \le j \le n$, the functions $\phi_j(x) := \phi(nx - j)$ and $\psi_j(x) := \frac{1}{n}\psi(nx - j)$ satisfy $\phi_j(k/n) = \delta_{j,k}$, $\phi'_j(k/n) = 0$, $\psi_j(k/n) = 0$ and $\psi'_j(k/n) = \delta_{j,k}$. In addition, the set $\{\phi_i, \psi_i\}_{i=0}^n$ is a basis for the finite element space $S^{\frac{1}{n}}(3, 1)$.

- (a) Let $S_0^{1/n}(3,1) = \{s \in S^{\frac{1}{n}}(3,1) : s(0) = s(1) = 0\}$. Show that $\langle u, v \rangle = \int_0^1 u'' v'' dx$ defines an inner product on $S_0^{1/n}(3,1)$, and that $\{\phi_j\}_{j=1}^{n-1} \cup \{\psi_j\}_{j=0}^n$ is a basis for $S_0^{1/n}(3,1)$. (b) Show that $\langle \psi_j, \psi_k \rangle = 0$ for all j, k such that |j - k| > 1.
- (c) Show that $\operatorname{argmin}\{\|s\| : s \in S_0^{\frac{1}{n}}, s(j/n) = f_j, j = 1, \dots, n-1\}$ is given by $s(x) = \sum_{j=1}^{n-1} f_j \phi_j(x) \sum_{j=0}^n \alpha_j \psi_j(x)$, where α_j 's satisfy a tridiagonal system. Why is this system invertible?