Applied Analysis Part
 January 11, 2022

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let ψ_{j} and $\phi_{j}, j=1, \ldots, n$, be in $L^{2}[0,1]$. Assume the sets $\left\{\psi_{j}\right\}_{j=1}^{n}$ and $\left\{\phi_{j}\right\}_{j=1}^{n}$ are linearly independent. Consider the finite rank kernel $k(x, y)=\sum_{j=1}^{n} \psi_{j}(x) \bar{\phi}_{j}(y)$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. You are given that K is compact.
(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Show that the equation $(I-\lambda K) u=f$ has an L^{2}-solution for all $f \in L^{2}[0,1]$ if and only if $1 / \bar{\lambda}$ is not an eigenvalue of the matrix A, where $A_{j k}=\left\langle\phi_{j}, \psi_{k}\right\rangle$.
Problem 2. Let both $K \in \mathcal{C}(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H})$ be self adjoint.
(a) Show that $\|L\|_{o p}=\sup _{\|u\|=1}|\langle L u, u\rangle|$. (Hint: look at $\langle L(u+v), u+v\rangle-\langle L(u-v), u-v\rangle$, then apply the polarization identity.)
(b) Prove this: Either $\|K\|$ or $-\|K\|$ is an eigenvalue of K.
(c) Let $\mathcal{H}=L^{2}[01]$ and define the operator $M: L^{2}[0,1] \rightarrow L^{2}[0,1]$ by $M u(x)=x u(x)$. Show that $\|M\|_{o p}=1$. Is M compact? Prove your answer.

Problem 3. Suppose that $L u=u^{\prime \prime}+\lambda u$, with $\operatorname{Dom}(L)=\left\{u \in L^{2}(-\infty, \infty): L u \in L^{2}(-\infty, \infty)\right\}$, where $\lambda \in \mathbb{C} \backslash[0, \infty)$. In addition, choose $\operatorname{Im} \sqrt{\lambda}>0$. Show that the Green's function for L is given by

$$
g(x, y, \lambda)=\frac{-i}{2 \sqrt{\lambda}} e^{i \sqrt{\lambda}|x-y|}
$$

Problem 4. Consider the functions ϕ and ψ defined below:

$$
\phi(x)=\left\{\begin{array}{ll}
(|x|-1)^{2}(2|x|+1) & |x| \leq 1 \\
0 & |x|>1
\end{array}, \quad \psi(x)=\left\{\begin{array}{ll}
x(|x|-1)^{2} & |x| \leq 1 \\
0 & |x|>1
\end{array} .\right.\right.
$$

Recall that for $n \geq 2$ and $0 \leq j \leq n$, the functions $\phi_{j}(x):=\phi(n x-j)$ and $\psi_{j}(x):=\frac{1}{n} \psi(n x-j)$ satisfy $\phi_{j}(k / n)=\delta_{j, k}, \phi_{j}^{\prime}(k / n)=0, \psi_{j}(k / n)=0$ and $\psi_{j}^{\prime}(k / n)=\delta_{j, k}$. In addition, the set $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ is a basis for the finite element space $S^{\frac{1}{n}}(3,1)$.
(a) Let $S_{0}^{1 / n}(3,1)=\left\{s \in S^{\frac{1}{n}}(3,1): s(0)=s(1)=0\right\}$. Show that $\langle u, v\rangle=\int_{0}^{1} u^{\prime \prime} v^{\prime \prime} d x$ defines an inner product on $S_{0}^{1 / n}(3,1)$, and that $\left\{\phi_{j}\right\}_{j=1}^{n-1} \cup\left\{\psi_{j}\right\}_{j=0}^{n}$ is a basis for $S_{0}^{1 / n}(3,1)$.
(b) Show that $\left\langle\psi_{j}, \psi_{k}\right\rangle=0$ for all j, k such that $|j-k|>1$.
(c) Show that $\operatorname{argmin}\left\{\|s\|: s \in S_{0}^{\frac{1}{n}}, s(j / n)=f_{j}, j=1, \ldots n-1\right\}$ is given by $s(x)=$ $\sum_{j=1}^{n-1} f_{j} \phi_{j}(x)-\sum_{j=0}^{n} \alpha_{j} \psi_{j}(x)$, where α_{j} 's satisfy a tridiagonal system. Why is this system invertible?

