Applied Analysis Part
 January 10, 2023

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let A be an $n \times n$ self-adjoint matrix, with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
(a) State and prove the Courant-Fischer min-max theorem.
(b) Let $B=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]$ be a real $n \times 3$ matrix, with b_{1}, b_{2}, b_{3} being linearly independent. Assume that $\|x\|=1$. If $q(x)=x^{T} A x$ and $\widehat{q}(x)=\left.q(x)\right|_{B^{T} x=0}$, show that

$$
\lambda_{1} \geq \max _{\|x\|=1} \widehat{q}(x) \geq \lambda_{4}
$$

Problem 2. Let $L u=-\left(x^{2} u^{\prime}\right)^{\prime}, 1 \leq x \leq 2$, with the domain of L given by

$$
D_{L}:=\left\{u \in L^{2}[1,2]: L u \in L^{2}[1,2], u(1)=0, u^{\prime}(2)=0\right\} .
$$

The homogeneous solutions to $L u=0$ are x^{-1} and 1 .
(a) Find the Green's function $g(x, y)$ for the problem $L u=f, u \in D_{L}$.
(b) Show that $K u:=\int_{0}^{1} g(\cdot, y) u(y) d y$ is a compact, self adjoint operator, and that 0 in not an eigenvalue of K.
(c) Without actually finding them, show that the eigenfunctions of L contain an orthonormal set that is complete in $L^{2}[1,2]$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H}.
(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Let $\mathcal{H}=L^{2}[0,1]$. Define the kernel $k(x, y):=x^{3} y^{2}$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. Show that K is in $\mathcal{C}(\mathcal{H})$.
(d) Let $L=I-\lambda K, \lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which $L u=f$ can be solved for all $f \in L^{2}[0,1]$. For these values of λ, find the resolvent $(I-\lambda K)^{-1}$.

Problem 4. Sketch a proof of the following: If f is a piecewise $C^{1}, 2 \pi$-periodic function, and if $S_{N}=\sum_{n=-N}^{N} c_{n} e^{i n x}$ is the $N^{\text {th }}$ partial sum of the Fourier series for f, then, for every $x \in \mathbb{R}$,

$$
\lim _{N \rightarrow \infty} S_{N}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2} .
$$

