Applied Analysis Part January 10, 2023

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let A be an $n \times n$ self-adjoint matrix, with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$.

- (a) State and prove the Courant-Fischer min-max theorem.
- (b) Let $B = [b_1 \ b_2 \ b_3]$ be a real $n \times 3$ matrix, with b_1, b_2, b_3 being linearly independent. Assume that ||x|| = 1. If $q(x) = x^T A x$ and $\hat{q}(x) = q(x)|_{B^T x = 0}$, show that

$$\lambda_1 \ge \max_{\|x\|=1} \widehat{q}(x) \ge \lambda_4.$$

Problem 2. Let $Lu = -(x^2u')'$, $1 \le x \le 2$, with the domain of L given by

$$D_L := \{ u \in L^2[1,2] : Lu \in L^2[1,2], u(1) = 0, u'(2) = 0 \}.$$

The homogeneous solutions to Lu = 0 are x^{-1} and 1.

- (a) Find the Green's function g(x, y) for the problem $Lu = f, u \in D_L$.
- (b) Show that $Ku := \int_0^1 g(\cdot, y) u(y) dy$ is a compact, self adjoint operator, and that 0 in not an eigenvalue of K.
- (c) Without actually finding them, show that the eigenfunctions of L contain an orthonormal set that is complete in $L^2[1,2]$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) State and prove the Fredholm Alternative.
- (b) State the Closed Range Theorem.
- (c) Let $\mathcal{H} = L^2[0,1]$. Define the kernel $k(x,y) := x^3y^2$ and let $Ku(x) = \int_0^1 k(x,y)u(y)dy$. Show that K is in $\mathcal{C}(\mathcal{H})$.
- (d) Let $L = I \lambda K$, $\lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which Lu = f can be solved for all $f \in L^2[0, 1]$. For these values of λ , find the resolvent $(I \lambda K)^{-1}$.

Problem 4. Sketch a proof of the following: If f is a piecewise C^1 , 2π -periodic function, and if $S_N = \sum_{n=-N}^N c_n e^{inx}$ is the N^{th} partial sum of the Fourier series for f, then, for every $x \in \mathbb{R}$,

$$\lim_{N \to \infty} S_N(x) = \frac{f(x^+) + f(x^-)}{2}.$$