Applied Analysis Part January 10, 2024

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let \mathcal{P} be the set of all polynomials.

- (a) State and sketch a proof of the Weierstrass Approximation Theorem.¹
- (b) Use (a) to show that \mathcal{P} is dense in $L^2[0,1]$. (You may use the fact that C[0,1] is dense in $L^2[0,1]$.)
- (c) Let $U := \{p_n\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the Gram-Schmidt process. Show that U is a complete set in $L^2[0,1]$.

Problem 2. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Show that $\psi \in \mathcal{D}$ satisfies $\psi = \phi''$ for some $\phi \in \mathcal{D}$ if and only if

$$\int_{-\infty}^{\infty} \psi(x) dx = 0 \text{ and } \int_{-\infty}^{\infty} x \psi(x) dx = 0.$$

(c) Find all distributions $T \in \mathcal{D}'$ such that $T''(x) = \delta(x+1) - 2\delta(x) + \delta(x-1)$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) State and prove the Fredholm Alternative.
- (b) State the Closed Range Theorem.
- (c) Let $\mathcal{H} = L^2[0,1]$. Define the kernel $k(x,y) := x^3y^2$ and let $Ku(x) = \int_0^1 k(x,y)u(y)dy$. Show that K is in $\mathcal{C}(\mathcal{H})$.
- (d) Let $L = I \lambda K$, $\lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which Lu = f can be solved for all $f \in L^2[0, 1]$. For these values of λ , find the resolvent $(I \lambda K)^{-1}$.

Problem 4. Consider the kernel $k(x,y) = \sum_{n=0}^{\infty} (1+n)^{-2} P_{n+1}(x) P_n(y)$, where the P_n 's are the orthogonal set of Legendre polynomials, relative to $L^2[-1,1]$. They are normalized so that $\int_{-1}^{1} P_n(x)^2 dx = \frac{2}{2n+1}$.

- (a) Show that $Ku(x) = \int_{-1}^{1} k(x, y)u(y)dy$ is a compact operator on $L^{2}[-1, 1]$.
- (b) Determine the spectrum of K.

$$1 = \sum_{j=0}^{n} \beta_{j,n}(x), \quad x = \sum_{j=0}^{n} \frac{j}{n} \beta_{j,n}(x) \qquad \frac{1}{n} x + (1 - \frac{1}{n}) x^2 = \sum_{j=0}^{n} \frac{j^2}{n^2} \beta_{j,n}(x).$$

¹You may use these identities involving the Bernstein polynomials. The last two identities start the sum at j = 0, rather than j = 1.