Applied Analysis Part
 January 10, 2024

Name: \qquad

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let \mathcal{P} be the set of all polynomials.
(a) State and sketch a proof of the Weierstrass Approximation Theorem. ${ }^{1}$
(b) Use (a) to show that \mathcal{P} is dense in $L^{2}[0,1]$. (You may use the the fact that $C[0,1]$ is dense in $L^{2}[0,1]$.)
(c) Let $U:=\left\{p_{n}\right\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the GramSchmidt process. Show that U is a complete set in $L^{2}[0,1]$.

Problem 2. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}^{\prime} be the corresponding set of distributions.
(a) Define convergence in \mathcal{D} and \mathcal{D}^{\prime}.
(b) Show that $\psi \in \mathcal{D}$ satisfies $\psi=\phi^{\prime \prime}$ for some $\phi \in \mathcal{D}$ if and only if

$$
\int_{-\infty}^{\infty} \psi(x) d x=0 \text { and } \int_{-\infty}^{\infty} x \psi(x) d x=0 .
$$

(c) Find all distributions $T \in \mathcal{D}^{\prime}$ such that $T^{\prime \prime}(x)=\delta(x+1)-2 \delta(x)+\delta(x-1)$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H}.
(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Let $\mathcal{H}=L^{2}[0,1]$. Define the kernel $k(x, y):=x^{3} y^{2}$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. Show that K is in $\mathcal{C}(\mathcal{H})$.
(d) Let $L=I-\lambda K, \lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which $L u=f$ can be solved for all $f \in L^{2}[0,1]$. For these values of λ, find the resolvent $(I-\lambda K)^{-1}$.
Problem 4. Consider the kernel $k(x, y)=\sum_{n=0}^{\infty}(1+n)^{-2} P_{n+1}(x) P_{n}(y)$, where the P_{n} 's are the orthogonal set of Legendre polynomials, relative to $L^{2}[-1,1]$. They are normalized so that $\int_{-1}^{1} P_{n}(x)^{2} d x=\frac{2}{2 n+1}$.
(a) Show that $K u(x)=\int_{-1}^{1} k(x, y) u(y) d y$ is a compact operator on $L^{2}[-1,1]$.
(b) Determine the spectrum of K.

[^0]
[^0]: ${ }^{1}$ You may use these identities involving the Bernstein polynomials. The last two identities start the sum at $j=0$, rather than $j=1$.

 $$
 1=\sum_{j=0}^{n} \beta_{j, n}(x), \quad x=\sum_{j=0}^{n} \frac{j}{n} \beta_{j, n}(x) \quad \frac{1}{n} x+\left(1-\frac{1}{n}\right) x^{2}=\sum_{j=0}^{n} \frac{j^{2}}{n^{2}} \beta_{j, n}(x) .
 $$

