APPLIED/NUMERICAL QUALIFIER
 NUMERICAL ANALYSIS PART

August 7, 2020.
For Problem 1, assume that Ω is a convex polygonal domain in \mathbb{R}^{2}. Let $\left\{\mathcal{T}_{h}\right\}_{h \in(0,1)}$ be a set of shape-regular triangulations of Ω. For each h, let V_{h} be the set of continuous functions which are piecewise linear with respect to \mathcal{T}_{h} and vanish on $\partial \Omega$. Define $D(\cdot, \cdot)$ to be the Dirichlet inner product,

$$
D(v, w):=\int_{\Omega} \nabla v \cdot \nabla w d x, \quad \text { for all } v, w \in H_{0}^{1}(\Omega)
$$

Let P_{h} denote the elliptic projection, i.e., $P_{h}: H_{0}^{1}(\Omega) \rightarrow V_{h}$ is defined by $P_{h} v:=w_{h}$ where $w_{h} \in V_{h}$ is the unique solution to the problem

$$
D\left(w_{h}, \theta_{h}\right)=D\left(v, \theta_{h}\right) \quad \text { for all } \theta_{h} \in V_{h}
$$

Problem 1. Let f be in $C^{0}\left([0, T] ; L^{2}(\Omega)\right)$ and u_{0} be in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$. Consider the parabolic initial value problem: $u:[0, T] \rightarrow H_{0}^{1}(\Omega)$ defined by

$$
\begin{equation*}
\partial_{t} u(t)-\Delta u(t)=f(t), \quad t \in(0, T], \quad u(0)=u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \tag{1.1}
\end{equation*}
$$

Accept as a fact that the above problem has a unique solution with regularity $u \in$ $C^{1}\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$. Let $k>0$ and consider the fully discrete approximation based on backward Euler time stepping, i.e., $U^{j} \approx u\left(t_{j}\right)$ where $t_{j}=j k$ satisfies $U^{0}=u_{h, 0} \in V_{h}$ and for $j=0,1, \ldots$,

$$
\begin{equation*}
\left(\frac{U^{j+1}-U^{j}}{k}, \phi_{h}\right)+D\left(U^{j+1}, \phi_{h}\right)=\left(f\left(t_{j+1}\right), \phi_{h}\right), \quad \text { for all } \phi_{h} \in V_{h} \tag{1.2}
\end{equation*}
$$

Here (\cdot, \cdot) denotes the inner product in $L^{2}(\Omega)$.
(a) State an estimate for the error $\left\|\left(I-P_{h}\right) v\right\|_{L^{2}(\Omega)}$ for all $h \in(0,1)$ and v in $H_{0}^{1}(\Omega) \cap$ $H^{2}(\Omega)$.
(b) Show that the following holds true for all $\ell \geq 1$:

$$
\begin{equation*}
\left\|U^{\ell}\right\|_{L^{2}(\Omega)} \leq\left\|U^{0}\right\|_{L^{2}(\Omega)}+k \sum_{j=1}^{\ell}\left\|f\left(t_{j}\right)\right\|_{L^{2}(\Omega)} \tag{1.3}
\end{equation*}
$$

(c) Let $\eta(t):=u(t)-P_{h}(u(t))$ for all $t \in[0, T]$. Show that there exists C such that for all $h \in(0,1)$,

$$
\|\eta(t)\|_{L^{2}(\Omega)} \leq C h^{2}\left[\int_{0}^{t}\left\|u_{\tau}\right\|_{H^{2}(\Omega)} d \tau+\left\|u_{0}\right\|_{H^{2}(\Omega)}\right]
$$

You may use the following inequality without proof:

$$
\begin{equation*}
\left\|\int_{0}^{t} \partial_{\tau} u d \tau\right\|_{H^{2}(\Omega)} \leq \int_{0}^{t}\left\|\partial_{\tau} u\right\|_{H^{2}(\Omega)} d \tau \tag{1.4}
\end{equation*}
$$

(d) Let $\theta^{j}:=P_{h} u\left(t_{j}\right)-U^{j}$ for all $j=0,1 \ldots$ Notice that $\left\{\theta^{j}\right\} \subset V_{h}$. Show that

$$
\begin{equation*}
\left(\frac{\theta^{j+1}-\theta^{j}}{k}, \phi_{h}\right)+D\left(\theta^{j+1}, \phi_{h}\right)=\left(w^{j+1}, \phi_{h}\right), \quad \text { for all } \phi_{h} \in V_{h} \text { and } j=0,1, \ldots \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
w^{j+1}:=\frac{1}{k} \int_{t_{j}}^{t_{j+1}} \partial_{\tau} P_{h}(u(\tau)) d \tau-\partial_{t} u\left(t_{j+1}\right) . \tag{1.6}
\end{equation*}
$$

Problem 2. Consider the system

$$
\begin{align*}
-\Delta u-v & =f \\
u-\Delta v & =g \tag{2.1}
\end{align*}
$$

in a bounded, smooth domain Ω in \mathbb{R}^{n}, with boundary conditions $u=v=0$ on $\partial \Omega$. (You may use that $\phi \mapsto\|\nabla \phi\|_{\left(L^{2}(\Omega)\right)^{n}}$ is a norm on the Hilbert space $H_{0}^{1}(\Omega)$.)
(a) Derive a weak formulation of the system (2.1), using suitable test functions (ϕ, ψ) for each equation resulting in a problem of the form: find (u, v) satisfying

$$
\begin{equation*}
a((u, v),(\phi, \psi))=(f, \phi)+(g, \psi) \tag{2.2}
\end{equation*}
$$

and explicitly define $a(\cdot, \cdot)$ and the function spaces for u, v, ϕ and ψ appearing in (2.2).
(b) Show that the weak formulation (2.2) has a unique solution.
(c) Let $d>0$ and $\Omega_{d}:=(-d, d)^{2}$. Show that there exists a positive number c such that the following holds true for every $d>0$ and every $u \in H_{0}^{1}\left(\Omega_{d}\right)$. (You may use that $C_{0}^{1}\left(\Omega_{d}\right)$ is dense in $\left.H_{0}^{1}\left(\Omega_{d}\right).\right)$

$$
\begin{equation*}
\|u\|_{L^{2}\left(\Omega_{d}\right)}^{2} \leq c d^{2}\|\nabla u\|_{\left(L^{2}\left(\Omega_{d}\right)\right)^{2}}^{2} . \tag{2.3}
\end{equation*}
$$

(d) Now change the second minus sign in the first equation of (2.1) to a plus sign. Use (2.3) to show stability for the modified equation on Ω_{d} provided that d is sufficiently small.

Problem 3. Let $a=y_{0}<y_{1}<\ldots<y_{N}=b$ be a partition of the interval $[a, b]$ and $J_{i}=\left[y_{i-1}, y_{i}\right]$ denote the i 'th subinterval. Set $y_{i+1 / 2}:=\left(y_{i+1}+y_{i}\right) / 2$ and $h:=$ $\max _{1 \leq i \leq N}\left\{y_{i}-y_{i-1}\right\}$. Define V_{h} to be the set of functions $f \in C^{1}(a, b)$ which are piecewise quadratic with respect to the composite mesh $y_{0}<y_{1 / 2}<y_{1}<y_{3 / 2}<\cdots<y_{N}$.
(a) Show that a function $f \in V_{h}$ restricted to J_{i} is uniquely determined by its values:

$$
f\left(y_{i-1}\right), f^{\prime}\left(y_{i-1}\right), f\left(y_{i}\right), f^{\prime}\left(y_{i}\right) .
$$

Hint: You can assume without proof that this problem can be reduced to the reference element case, i.e., show that a function $f \in C^{1}(0,1)$ which is piecewise quadratic with respect to the intervals $[0,1 / 2]$ and $[1 / 2,1]$ is uniquely determined by its values:

$$
f(0), f^{\prime}(0), f(1), f^{\prime}(1)
$$

(b) Construct the local shape functions associated with the degrees of freedom on the interval $[0,1]$ defined in Part (a).
(c) What is the dimension of V_{h} (explain your answer)?

