Combined Applied Analysis/Numerical Analysis Qualifier

Numerical Analysis Part
August 5, 2022
Problem 1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded polygonal domain, $\boldsymbol{\beta} \in C^{0}(\bar{\Omega})^{2}, \mu \in C^{0}(\bar{\Omega})$ and $f \in L^{2}(\Omega)$. Assume that for some positive constants $\mu_{0}, \mu_{1}, \beta_{1}$, there holds $0<\mu_{0} \leq \mu(x) \leq \mu_{1}$ and $|\boldsymbol{\beta}(x)| \leq \beta_{1}$ for all $x \in \Omega$. In addition, we suppose that $\operatorname{div}(\boldsymbol{\beta})=0$. Consider the following weak formulation of a convection-diffusion problem: Seek $u \in H_{0}^{1}(\Omega)$ satisfying

$$
a(u, v):=\int_{\Omega} \mu \nabla u \cdot \nabla v+\int_{\Omega}(\boldsymbol{\beta} \cdot \nabla u) v=\int_{\Omega} f v=: F(v), \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Accept that there exists a unique solution to the above problem.
(1) Given a shape-regular, quasi-uniform sequence of triangulations $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of Ω (h denotes the largest outer circle diameter), we set

$$
\mathbb{V}_{h}:=\left\{v_{h} \in H_{0}^{1}(\Omega)\left|v_{h}\right|_{T} \in \mathbb{P}^{1}(T), \quad \forall T \in \mathcal{T}_{h}\right\}
$$

and define for $\alpha>0$ the approximate bilinear form on $\mathbb{V}_{h} \times \mathbb{V}_{h}$

$$
a_{h}\left(v_{h}, w_{h}\right):=a\left(v_{h}, w_{h}\right)+\alpha h \int_{\Omega} \nabla v_{h} \cdot \nabla w_{h}, \quad \forall w_{h}, v_{h} \in \mathbb{V}_{h} .
$$

Show that $a_{h}\left(v_{h}, v_{h}\right) \geq \mu_{h}\left\|\nabla v_{h}\right\|_{L^{2}(\Omega)}^{2}$ with $\mu_{h}:=\mu_{0}+\alpha h$ and deduce that the finite element formulation: Seek $u_{h} \in \mathbb{V}_{h}$ such that

$$
a_{h}\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in \mathbb{V}_{h}
$$

has one and only one solution $u_{h} \in \mathbb{V}_{h}$.
(2) Show that for all $v_{h} \in \mathbb{V}_{h}$

$$
\mu_{h}\left\|\nabla\left(v_{h}-u_{h}\right)\right\|_{L^{2}(\Omega)}^{2} \leq a_{h}\left(v_{h}, v_{h}-u_{h}\right)-F\left(v_{h}-u_{h}\right)
$$

and prove that as a consequence

$$
\left\|\nabla\left(u-u_{h}\right)\right\|_{L^{2}(\Omega)} \leq \inf _{v_{h} \in \mathbb{V}_{h}}\left\{\frac{1}{\mu_{h}} \sup _{w_{h} \in \mathbb{V}_{h}} \frac{\left|a_{h}\left(v_{h}, w_{h}\right)-a\left(v_{h}, w_{h}\right)\right|}{\left\|\nabla w_{h}\right\|_{L^{2}(\Omega)}}+\left(1+\frac{M}{\mu_{h}}\right)\left\|\nabla\left(v_{h}-u\right)\right\|_{L^{2}(\Omega)}\right\}
$$

where $M>0$ denotes the continuity constant of $a(.,$.$) , i.e.$

$$
a(w, v) \leq M\|\nabla w\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{2}(\Omega)} \quad \forall v, w \in H_{0}^{1}(\Omega)
$$

(3) Derive the estimate

$$
\sup _{w_{h} \in \mathbb{V}_{h}} \frac{\left|a_{h}\left(v_{h}, w_{h}\right)-a\left(v_{h}, w_{h}\right)\right|}{\left\|\nabla w_{h}\right\|_{L^{2}(\Omega)}} \leq \alpha h\left\|\nabla v_{h}\right\|_{L^{2}(\Omega)} .
$$

(4) Deduce the existence of a constant C such that

$$
\left\|\nabla\left(u-u_{h}\right)\right\|_{L^{2}(\Omega)} \leq C\left(1+\frac{M+\alpha}{\mu_{h}}\right)\|u\|_{H^{2}(\Omega)} h .
$$

You can use, without proof, valid results for interpolation operators.
Problem 2. Let $\Omega \subset \mathbb{R}^{2}$ and $\left\{\mathcal{T}_{h}\right\}_{h>0}$ be a sequence of shape-regular and quasi-uniform triangulations of Ω. For $v \in H^{1}(\Omega)$, we define $\pi_{h} v \in L^{2}(\Omega)$ on each triangle $T \in \mathcal{T}_{h}$ by

$$
\left.\pi_{h} u\right|_{T}:=\frac{1}{|T|} \int_{T} u \in \mathbb{R} .
$$

Show that there exist a constant C independent on h such that for $v \in H^{1}(\Omega)$ there holds

$$
\left\|v-\pi_{h} v\right\|_{L^{2}(\Omega)} \leq C h|v|_{H^{1}(\Omega)} .
$$

Hint: If needed, you can use without proof the Denis-Lions and Bramble-Hilbert Lemmas as well as the estimates relating norms on $T \in \mathcal{T}_{h}$ with norms on the reference triangle. Make sure to precisely state and check the assumptions of the results used.

Problem 3. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain. Let $\left\{\mathcal{T}_{h}\right\}$ be a sequence of quasi-uniform (typical diameter $\sim h$) and shape-regular triangulations of Ω. We set

$$
\mathbb{V}_{h}:=\left\{v_{h} \in H_{0}^{1}(\Omega)\left|v_{h}\right|_{T} \in \mathbb{P}^{1}(T), \quad \forall T \in \mathcal{T}_{h}\right\}
$$

and let $\delta t>0$. We consider the following explicit Euler time discretization of the heat equation: For $n \geq 1$, find $u_{h}^{n} \in \mathbb{V}_{h}$ recursively as satisfying

$$
\int_{\Omega} \frac{u_{h}^{n+1}-u_{h}^{n}}{\delta t} v_{h}+\int_{\Omega} \nabla u_{h}^{n} \cdot \nabla v_{h}=0, \quad \forall v_{h} \in \mathbb{V}_{h} .
$$

Show that for $n \geq 1$ there holds

$$
\frac{1}{2 \delta t} \int_{\Omega}\left|u_{h}^{n+1}\right|^{2}+\left(1-\frac{C^{2} \delta t}{2 h^{2}}\right) \sum_{j=0}^{n} \int_{\Omega}\left|\nabla u_{h}^{j}\right|^{2} \leq \frac{1}{2 \delta t} \int_{\Omega}\left|u_{h}^{0}\right|^{2},
$$

where C is the constant in the inverse estimate (which you can use without proof)

$$
\left\|\nabla v_{h}\right\|_{L^{2}(\Omega)} \leq \frac{C}{h}\left\|v_{h}\right\|_{L^{2}(\Omega)}, \quad \forall v_{h} \in \mathbb{V}_{h}
$$

Deduce a condition on the discretization parameters for the scheme to be stable.
Hint: You need to find two appropriate choices of test functions v_{h} to derive the stability estimate. Also recall that

$$
2(a-b) a=a^{2}-b^{2}+(a-b)^{2} \quad \text { and } \quad 2(a-b) b=a^{2}-b^{2}-(a-b)^{2} .
$$

