NUMERICAL ANALYSIS QUALIFIER

January, 2020
Problem 1. Consider the following two finite elements: $\left(\tau, Q_{1}, \Sigma\right)$ and $\left(\tau, \widetilde{Q}_{1}, \Sigma\right)$, where

$$
\begin{aligned}
& \tau=[-1,1]^{2} \\
& Q_{1}=\operatorname{span}\{1, x, y, x y\} \\
& \widetilde{Q}_{1}=\operatorname{span}\left\{1, x, y, x^{2}-y^{2}\right\} \\
& \Sigma=\{w(-1,0), w(1,0), w(0,-1), w(0,1)\}
\end{aligned}
$$

Obviously, Σ is the set of the values of a function $w(x, y)$ at the midpoints of the edges of τ.
(a) Show that the finite element $\left(\tau, Q_{1}, \Sigma\right)$ is not unisolvent.
(b) Show that the finite element $\left(\tau, \widetilde{Q}_{1}, \Sigma\right)$ is unisolvent.
(c) Show that the finite element spaces are in general not H^{1}-conforming.

Problem 2. Consider the boundary value problem

$$
\begin{align*}
& u^{(4)}(x)+q(x) u=f(x), \quad 0<x<1, \\
& u(0)=0, u(1)=0, \tag{2.1}\\
& u^{\prime \prime}(0)=-\gamma, u^{\prime}(1)+u^{\prime \prime}(1)=\beta,
\end{align*}
$$

where $f(x)$ is a given function on $(0,1), \beta$ and γ are given constants and $q(x) \geq 0$.
(a) Give a weak formulation of this problem in an appropriate space V, characterize V, and prove that the corresponding bilinear form is coercive on V.
(b) Set up a finite dimensional space $V_{h} \subset V$ of piece-wise cubic functions over a uniform partition of $(0,1)$. Introduce the Galerkin finite element method for the problem (2.1) for V_{h}. State an error estimate in V-norm assuming that $u(x) \in H^{4}(0,1)$ (do NOT prove this).
(c) Assuming "full regularity" and using duality argument prove the following estimate for the error of the Galerkin solution u_{h} :

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{L^{2}} \leq C h^{4}\left\|u^{(4)}\right\|_{L^{2}} \tag{2.2}
\end{equation*}
$$

Further prove the estimate $\left\|u^{\prime}-u_{h}^{\prime}\right\|_{L^{2}} \leq C h^{3}\left\|u^{(4)}\right\|_{L^{2}}$.

Problem 3. Let $\Omega \subset \mathbb{R}^{2}$ be a convex polygonal domain, and let \mathcal{T}_{h} be a shape-regular and quasi-uniform triangulation of Ω with element diameters uniformly equivalent to h. Let also $V_{h} \subset H_{0}^{1}(\Omega)$ be a piecewise linear Lagrange finite element space. You may assume the existence of an interpolation operator $I_{h}: H_{0}^{1}(\Omega) \rightarrow V_{h}$ satisfying

$$
\left\|u-I_{h} u\right\|_{L_{2}(\Omega)}+h\left\|u-I_{h} u\right\|_{H^{1}(\Omega)} \leq C h^{2}|u|_{H^{2}(\Omega)} .
$$

(a) Let $u(t) \in H_{0}^{1}(\Omega)(0 \leq t \leq T), u_{0}$, and f be sufficiently smooth such that

$$
\begin{aligned}
\int_{\Omega} u_{t} v d x+\int_{\Omega} \nabla u \cdot \nabla v d x & =\int_{\Omega} f v d x, v \in H_{0}^{1}(\Omega), 0<t \leq T \\
u(x, 0) & =u_{0}(x), x \in \Omega
\end{aligned}
$$

Write down the spatially semidiscrete (i.e., discretized in space but not in time) finite element formulation of this problem. Denote by u_{h} the solution to these finite element equations.
(b) For $0<t \leq T$, let now $\tilde{u}_{h}(t)$ be the elliptic finite element approximation to $u(t)$. That is

$$
\int_{\Omega} \nabla \tilde{u}_{h}(t) \cdot \nabla v_{h} d x=\int_{\Omega} \nabla u(t) \cdot \nabla v_{h} d x, v_{h} \in V_{h}
$$

Prove that
$\int_{\Omega}\left(u_{h}-\tilde{u}_{h}\right)_{t} v_{h} d x+\int_{\Omega} \nabla\left(u_{h}-\tilde{u}_{h}\right) \cdot \nabla v_{h} d x=\int_{\Omega}\left(u-\tilde{u}_{h}\right)_{t} v_{h} d x, v_{h} \in V_{h}, 0<t \leq T$.
(c) Next recall Gronwall's Lemma, which states that if σ and ρ are continuous real functions with $\sigma \geq 0$ and $c \geq 0$ is a constant, and if

$$
\sigma(t) \leq \rho(t)+c \int_{0}^{t} \sigma(s) d s, t \in[0, T]
$$

then

$$
\sigma(t) \leq e^{c t} \rho(t), t \in[0, T] .
$$

Using this result, prove that

$$
\left\|\left(u_{h}-\tilde{u}_{h}\right)(T)\right\|_{L_{2}(\Omega)}^{2} \leq C(T)\left(\left\|\left(u_{h}-\tilde{u}_{h}\right)(0)\right\|_{L_{2}(\Omega)}^{2}+\int_{0}^{T}\left\|\left(u-\tilde{u}_{h}\right)_{t}(s)\right\|_{L_{2}(\Omega)}^{2} d s\right)
$$

(d) For the final part you will need the following intermediate result. Given $v \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, let $v_{h} \in V_{h}$ satisfy

$$
\int_{\Omega} \nabla v_{h} \cdot \nabla w_{h} d x=\int_{\Omega} \nabla v \cdot \nabla w_{h} d x, \quad \text { all } w_{h} \in V_{h}
$$

Then

$$
\left\|v-v_{h}\right\|_{L_{2}(\Omega)} \leq C h^{2}|v|_{H^{2}(\Omega)} .
$$

Assuming this result and additionally that $\left\|\left(u-u_{h}\right)(0)\right\|_{L_{2}(\Omega)} \leq C h^{2}|u(0)|_{H^{2}(\Omega)}$, prove that

$$
\left\|\left(u-u_{h}\right)(T)\right\|_{L_{2}(\Omega)} \leq C(T) h^{2}\left(|u(0)|_{H^{2}(\Omega)}+\left(\int_{0}^{T}\left|u_{t}\right|_{H^{2}(\Omega)}^{2}\right)^{1 / 2}\right)
$$

