NUMERICAL ANALYSIS QUALIFIER

January, 2020

Problem 1. Consider the following two finite elements: (τ, Q_1, Σ) and $(\tau, \tilde{Q}_1, \Sigma)$, where

$$\begin{split} \tau &= [-1,1]^2 \\ Q_1 &= span\{1,x,y,xy\}, \\ \widetilde{Q}_1 &= span\{1,x,y,x^2 - y^2\} \\ \Sigma &= \{w(-1,0),w(1,0),w(0,-1),w(0,1)\}. \end{split}$$

Obviously, Σ is the set of the values of a function w(x, y) at the midpoints of the edges of τ .

- (a) Show that the finite element (τ, Q_1, Σ) is not unisolvent.
- (b) Show that the finite element (τ, Q_1, Σ) is unisolvent.
- (c) Show that the finite element spaces are in general not H^1 -conforming.

Problem 2. Consider the boundary value problem

(2.1)
$$u^{(4)}(x) + q(x)u = f(x), \qquad 0 < x < 1, u(0) = 0, u(1) = 0, u''(0) = -\gamma, u'(1) + u''(1) = \beta,$$

where f(x) is a given function on (0,1), β and γ are given constants and $q(x) \ge 0$.

- (a) Give a weak formulation of this problem in an appropriate space V, characterize V, and prove that the corresponding bilinear form is coercive on V.
- (b) Set up a finite dimensional space $V_h \subset V$ of piece-wise cubic functions over a uniform partition of (0, 1). Introduce the Galerkin finite element method for the problem (2.1) for V_h . State an error estimate in V-norm assuming that $u(x) \in H^4(0, 1)$ (do NOT prove this).
- (c) Assuming "full regularity" and using duality argument **prove** the following estimate for the error of the Galerkin solution u_h :

(2.2)
$$\|u - u_h\|_{L^2} \le Ch^4 \|u^{(4)}\|_{L^2}.$$

Further prove the estimate $||u' - u'_h||_{L^2} \le Ch^3 ||u^{(4)}||_{L^2}$.

Problem 3. Let $\Omega \subset \mathbb{R}^2$ be a convex polygonal domain, and let \mathcal{T}_h be a shape-regular and quasi-uniform triangulation of Ω with element diameters uniformly equivalent to h. Let also $V_h \subset H_0^1(\Omega)$ be a piecewise linear Lagrange finite element space. You may assume the existence of an interpolation operator $I_h : H_0^1(\Omega) \to V_h$ satisfying

$$||u - I_h u||_{L_2(\Omega)} + h||u - I_h u||_{H^1(\Omega)} \le Ch^2 |u|_{H^2(\Omega)}.$$

(a) Let $u(t) \in H_0^1(\Omega)$ $(0 \le t \le T)$, u_0 , and f be sufficiently smooth such that

$$\int_{\Omega} u_t v \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \ v \in H^1_0(\Omega), \ 0 < t \le T,$$
$$u(x,0) = u_0(x), \ x \in \Omega.$$

Write down the spatially semidiscrete (i.e., discretized in space but not in time) finite element formulation of this problem. Denote by u_h the solution to these finite element equations.

(b) For $0 < t \leq T$, let now $\tilde{u}_h(t)$ be the *elliptic* finite element approximation to u(t). That is

$$\int_{\Omega} \nabla \tilde{u}_h(t) \cdot \nabla v_h \ dx = \int_{\Omega} \nabla u(t) \cdot \nabla v_h \ dx, \ v_h \in V_h.$$

Prove that

$$\int_{\Omega} (u_h - \tilde{u}_h)_t v_h \, dx + \int_{\Omega} \nabla (u_h - \tilde{u}_h) \cdot \nabla v_h \, dx = \int_{\Omega} (u - \tilde{u}_h)_t v_h \, dx, \ v_h \in V_h, \ 0 < t \le T.$$

(c) Next recall Gronwall's Lemma, which states that if σ and ρ are continuous real functions with $\sigma \ge 0$ and $c \ge 0$ is a constant, and if

$$\sigma(t) \le \rho(t) + c \int_0^t \sigma(s) \, ds, \ t \in [0, T],$$

then

$$\sigma(t) \le e^{ct} \rho(t), \ t \in [0, T].$$

Using this result, prove that

$$\|(u_h - \tilde{u}_h)(T)\|_{L_2(\Omega)}^2 \le C(T) \left(\|(u_h - \tilde{u}_h)(0)\|_{L_2(\Omega)}^2 + \int_0^T \|(u - \tilde{u}_h)_t(s)\|_{L_2(\Omega)}^2 ds \right).$$

(d) For the final part you will need the following intermediate result. Given $v \in H_0^1(\Omega) \cap H^2(\Omega)$, let $v_h \in V_h$ satisfy

$$\int_{\Omega} \nabla v_h \cdot \nabla w_h dx = \int_{\Omega} \nabla v \cdot \nabla w_h dx, \text{ all } w_h \in V_h.$$

Then

$$||v - v_h||_{L_2(\Omega)} \le Ch^2 |v|_{H^2(\Omega)}.$$

Assuming this result and additionally that $||(u-u_h)(0)||_{L_2(\Omega)} \leq Ch^2 |u(0)|_{H^2(\Omega)}$, prove that

$$\|(u-u_h)(T)\|_{L_2(\Omega)} \le C(T)h^2 \left(|u(0)|_{H^2(\Omega)} + \left(\int_0^T |u_t|_{H^2(\Omega)}^2 \right)^{1/2} \right).$$