NUMERICAL ANALYSIS QUALIFIER

January 11, 2022

Name: _____

Problem 1. Let Ω be a polygonal domain in \mathbb{R}^2 and assume that $0 \in \Omega$. Let $u \in H^1(\Omega)$ be the solution of

(1.1)
$$a(u,\varphi) = l(\varphi), \quad \text{for all } \varphi \in H^1(\Omega),$$

where the bilinear form a(., .) and, for a given function $f \in L^2(\Omega)$, the right hand side l(.) are defined as follows,

$$a(v,\varphi) := \int_{\Omega} (\nabla v \cdot \nabla \varphi + ||x||^2 v \varphi) dx, \qquad l(\varphi) := \int_{\Omega} f \varphi dx \quad \text{for all } v, \varphi \in H^1(\Omega).$$

Let \mathcal{T}_h , 0 < h < 1, be a family of shape regular triangulations of Ω . The elements of these partitions will be denoted by T_h . Set

$$V_h := \{ v_h \in H^1(\Omega) : v_h |_{T_h} \in \mathcal{P}^1, T_h \in \mathcal{T}_h \},$$

where \mathcal{P}^1 denotes the space of polynomials on \mathbf{R}^2 of degree at most 1.

(a) Show that the bilinear form a(.,.) is coercive in $H^1(\Omega)$. Hint: Decompose Ω into $\Omega_i := \Omega \cap B_{\varepsilon}(0)$ and $\Omega_o := \Omega \setminus \Omega_i$, where $B_{\varepsilon}(0)$ is a disc with

Hint: Decompose Ω into $\Omega_i := \Omega \cap B_{\varepsilon}(0)$ and $\Omega_o := \Omega \setminus \Omega_i$, where $B_{\varepsilon}(0)$ is a disc with radius ε around 0 such that $B_{\varepsilon}(0) \subset \Omega$. You can use without proof that

$$||v||_{L^2(\Omega)}^2 \le C \{||v||_{L^2(\Omega_o)}^2 + ||\nabla v||_{L^2(\Omega)^2}^2\}$$

for all $v \in H^1(\Omega)$, for a suitable constant $C \geq 1$ depending on ε but independent of v.

(b) Given that $a(\cdot, \cdot)$ and $l(\cdot)$ are continuous, there exists a unique weak solution $u \in H^1(\Omega)$ of (1.1). Derive the strong form of problem (1.1) assuming that the solution u is smooth.

Now, consider the following finite element ansatz: find $u_h \in V_h$ such that

$$(1.2) a(u_h, \varphi_h) = l(\varphi_h), \quad \forall \varphi_h \in V_h.$$

- (c) State and prove Cea's Lemma for the error of the FE solution in the H^1 -norm.
- (d) Assuming that the solution u is in $H^2(\Omega)$, derive an estimate for the error $||u-u_h||_{H^1(\Omega)}$. Your final estimate should reflect the correct order of convergence with respect to the mesh parameter h. You may use without proof suitable approximation results for the finite element space V_h .

Problem 2. Consider the unit interval $\Omega = (0,1)$ and the following 1D parabolic problem:

$$\partial_t u(x,t) - \partial_{xx} u(x,t) = f(t,x), \qquad \text{for } x \in \Omega, \ t \in (0,T],$$

$$u(t,0) = u(t,1) = 0 \qquad \text{for } t \in (0,T],$$

$$u(0,x) = u_0(x), \qquad \text{for } x \in \Omega.$$

Here, f(t,x) and $u_0(x)$ are given, smooth functions.

- (a) Derive the variational (in space) formulation of the above problem. What is a suitable function space V?
- (b) Discretize the variational formulation in time only (Rothe's method) with the backward Euler scheme.

1

(c) Let now $\{\psi_j\}_{j=1}^{\infty} \subset H^2(\Omega) \cap H_0^1(\Omega)$ be an orthonormal (in $L_2(\Omega)$) eigenbasis of $-\partial_{xx}$ with homogeneous Dirichlet boundary conditions with corresponding eigenvalues $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3...$ That is,

$$-\partial_{xx}\psi_j(x) = \lambda_j\psi_j(x), \ x \in (0,1), \ \psi_j(0) = \psi_j(1) = 0, \ \|\psi_j\|_{L_2(0,1)} = 1, \ \int_0^1 \psi_i\psi_j = \delta_{ij}.$$

Now, write the semi discrete solution defined in part (b) as follows:

$$u_k^n = \sum_{j=1}^{\infty} c_j^n \, \psi_j(x),$$

where k is the time-step size, t_n denotes the time point $t_n = k n$. Derive the equation following relation for c_i^n :

following relation for
$$c_j^{n} = c_j^n$$
 $c_j^{n+1} = c_j^{n+1}$, $j = 0, 1, 2...$

where $F_j^{n+1} := \int_0^1 f(t_{n+1}, x) \psi_j(x) dx$.

(d) Prove the coefficientwise stability result

$$|c_j^{n+1}| \le q_j^{n+1} |c_j^0| + k \sum_{m=1}^{n+1} q_j^{n+2-m} |F_j^m|, \text{ where } q_j := \frac{1}{1 + k\lambda_j}.$$

Using that $||u_k^n||_{L_2(0,1)} = (\sum_{j=1}^{\infty} (c_j^n)^2)^{1/2}$, conclude that if f = 0, then $||u_k^n||_{L_2(0,1)} \le ||u_0||_{L_2(0,1)}$.

Problem 3. Let K be a nondegenerate triangle in \mathbf{R}^2 . Let a_1, a_2, a_3 be the three vertices of K. Let $a_{ij} = a_{ji}$ denote the midpoint of the segment $(a_i, a_j), i, j \in \{1, 2, 3\}$ and $i \neq j$. Let \mathcal{P}^2 be the set of the polynomial functions over K of total degree at most 2. Let $\Sigma = \{\sigma_1, \sigma_2, \sigma_3, \sigma_{12}, \sigma_{23}, \sigma_{31}\}$ be the functionals (or degrees of freedom) on \mathcal{P}^2 defined as

$$\sigma_i(p) := p(a_i), i \in \{1, 2, 3\}$$
 $\sigma_{ij}(p) := p(a_i) + p(a_j) - 2p(a_{ij}), i, j = 1, 2, 3, i \neq j.$

- (a) Show that Σ is a unisolvent set for \mathbb{P}^2 (this means that any $p \in \mathbb{P}^2$ is uniquely determined by the values of the above degrees of freedom applied to p).
- (b) Compute the "nodal" basis $\{\psi_j\}_{j=1}^6$ of \mathcal{P}^2 which corresponds to $\{\sigma_1,\ldots,\sigma_{31}\}$.

Hint for part (a) and (b): Use barycentric coordinates.

(c) Given $u \in C^0(K)$, define an interpolation operator I_h by

$$(I_h u)(x) = \sum_{j=1}^{3} \sigma_j(u)\psi_j(x) + \sigma_{12}(u)\psi_4(x) + \sigma_{23}(u)\psi_5(x) + \sigma_{23}(u)\psi_6(x).$$

Show the following:

- (i) $I_h u = u$ if $u \in \mathcal{P}^2$.
- (ii) There is a constant C independent of u and K such that

$$||I_h u||_{L_{\infty}(K)} \le C||u||_{L_{\infty}(K)}.$$

(iii) Finally deduce that

$$||u - I_h u||_{L_{\infty}(K)} \le C \inf_{\chi \in \mathcal{P}^2} ||u - \chi||_{L_{\infty}(K)}.$$