NUMERICAL ANALYSIS QUALIFIER

January, 2023

Problem 1. Let \mathbb{P}_2 be the space of polynomials in two variables spanned by $\{1, x_1, x_2, x_1^2, x_1x_2, x_2^2\}$, let \hat{T} be the reference unit triangle, $\hat{\gamma}$ one side of \hat{T} , and $\hat{\pi}$ the standard Lagrange interpolant in \hat{T} with values in \mathbb{P}_2 .

Recall that there exists a constant C only depending on the geometry of \hat{T} such that

$$\forall v \in H^3(\hat{T}), \inf_{p \in \mathbb{P}_2} \|v + p\|_{H^3(\hat{T})} \le C|v|_{H^3(\hat{T})}.$$

- 1. State a trace theorem relating $L^2(\hat{\gamma})$ and $H^1(\hat{T})$.
- 2. Prove that there exists a constant \hat{C} only depending on the geometry of \hat{T} and $\hat{\gamma}$ such that

$$\forall \hat{u} \in H^3(\hat{T}), \|\hat{u} - \hat{\pi}(\hat{u})\|_{L^2(\hat{\gamma})} \le \hat{C}|\hat{u}|_{H^3(\hat{T})}.$$

3. Let Ω be a bounded polygon in \mathbb{R}^2 , \mathcal{T}_h be a triangulation of Ω and

$$X_h = \{v_h \in \mathcal{C}^0(\overline{\Omega}); \forall T \in \mathcal{T}_h, v_h|_T \in \mathbb{P}_2\}.$$

Let T be a triangle of \mathcal{T}_h with diameter h_T and diameter of inscribed disc ϱ_T , and let γ be one side of T. Let F_T be the affine mapping from \hat{T} onto T and let $\pi_{2,h}$ denote the standard Lagrange interpolant on X_h . Prove that there exists a constant C only depending on the geometry of \hat{T} and $\hat{\gamma}$ such that

$$\forall u \in H^3(T), \|u - \pi_{2,h}(u)\|_{L^2(\gamma)} \le C\sigma_T h_T^{2+1/2} |u|_{H^3(T)},$$

where $\sigma_T = h_T/\varrho_T$.

Problem 2. For $f \in L^2(0,\ell)$, consider the following weak formulation: Seek $(u,v) \in \mathbb{V} := H_0^1(0,\ell) \times H_0^1(0,\ell)$ satisfying for all $(\phi,\psi) \in \mathbb{V}$

(2.1)
$$a((u,v);(\phi,\psi)) := \int_0^\ell u'\phi' + \int_0^\ell v'\psi' - \int_0^\ell v\phi = \int_0^\ell f\psi =: L(\psi).$$

- 1. What is the corresponding strong form satisfied by u (eliminate v)?
- 2. Show that for all $w \in H_0^1(0,\ell)$

$$\left(\int_0^\ell w^2\right)^{1/2} \le \left(\int_0^\ell |w'|^2\right)^{1/2}.$$

3. Show that $a(\cdot; \cdot)$ coerces the natural norm on \mathbb{V} :

$$|||\phi,\psi|||:=\left(\|\phi\|_{H^1(0,\ell)}^2+\|\psi\|_{H^1(0,\ell)}^2\right)^{1/2}$$

and explicitly find a coercivity constant.

4. Let \mathbb{V}_h be a finite dimensional subspace of \mathbb{V} . Show that there is a unique $(u_h, v_h) \in \mathbb{V}_h$ satisfying for all $(\phi_h, \psi_h) \in \mathbb{V}_h$

$$a((u_h, v_h); (\phi_h, \psi_h)) = L(\psi_h).$$

5. Prove the estimate

$$|||u-u_h,v-v_h||| \le C_1 \inf_{(\phi_h,\psi_h)\in V_h} |||u-\phi_h,v-\phi_h|||$$

where C_1 is a constant independent of h (find C_1 explicitly).

6. You may assume that $u, v \in H^1_0(0, \ell) \cap H^2(0, \ell)$. Propose a discrete space \mathbb{V}_h such that $|||u - u_h, v - v_h||| \leq C_2 h(||u||_{H^2(0, \ell)} + ||v||_{H^2(0, \ell)})$

for a constant C_2 independent of h. Justify your suggestion (you can assume the standard interpolation estimates hold).

Problem 3. Let b be a strictly positive constant and consider the problem: find u(x,t) such that

$$\begin{split} &\frac{\partial u}{\partial t} + b \frac{\partial u}{\partial x} = 0, \quad 0 < x < 1, \ 0 < t \\ &u(x,0) = u_0(x), \quad 0 < x < 1, \\ &u(0,t) = u(1,t), \ t > 0 \end{split}$$

where u_0 is a smooth periodic function. Let J and N be positive integers, $x_i = ih$ for i = 0, ..., J where h = 1/J and $t_n = n\tau$ for $n \ge 0$ where $\tau = 1/N$. Also denote by u_j^n the approximation of $u(x_j, t_n)$.

Set $u_i^0 = u_0(x_i)$ and define reccursively u_i^n by the following Lax scheme

$$u_{j}^{n+1}=\frac{1}{2}(u_{j+1}^{n}+u_{j-1}^{n})-\frac{\tau b}{2h}(u_{j+1}^{n}-u_{j-1}^{n}),\quad j=0,...,J,$$

with the convention that $u_{-1}^n=u_{J-1}^n$ and $u_{J+1}^n=u_1^n$. Show that for all j=0,...,J and $n\geq 0$ $\min_i(u_i^0)\leq u_j^n\leq \max_i(u_i^0)$

provided $\frac{\tau b}{h} \leq 1$.