APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER
 Numerical Analysis Part, 2 hours
 August 8, 2018

Problem 1. Let $\Omega:=(0,1)^{2}$ and $u \in H_{\#}^{1}(\Omega):=\left\{u \in H^{1}(\Omega): \int_{\Omega} u=0\right\}$ be such that

$$
a(u, v):=\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v=: L(v), \quad \forall v \in H_{\#}^{1}(\Omega),
$$

where $f \in L^{2}(\Omega)$ is a given function satisfying $\int_{\Omega} f=0$. Accept as a fact that there exists a unique weak solution $u \in H_{\#}^{1}(\Omega)$.
The goal of this exercise is to analyze a non-conforming finite element method relaxing the vanishing mean value condition.
(1) Consider the approximate problem: Given $0<\epsilon \leq 1$, seek $u^{\epsilon} \in H^{1}(\Omega)$ such that

$$
a_{\epsilon}\left(u^{\epsilon}, v\right):=\int_{\Omega} \nabla u^{\epsilon} \cdot \nabla v+\epsilon \int_{\Omega} u^{\epsilon} v=L(v), \quad \forall v \in H^{1}(\Omega)
$$

(i) Show that the above problem has a unique solution; (ii) show that $\int_{\Omega} u^{\epsilon}=0$, i.e. $u^{\epsilon} \in H_{\#}^{1}(\Omega)$;
(iii) Show that there exists a constant C independent of ϵ such that

$$
\left\|\nabla\left(u-u^{\epsilon}\right)\right\| \leq C \epsilon\|f\|_{L^{2}(\Omega)}
$$

Hint: You can use (without proof) the following inequality: There exist a constant c such that for all $v \in H_{\#}^{1}(\Omega)$ there holds

$$
\|v\|_{L^{2}(\Omega)} \leq c\|\nabla v\|_{L^{2}(\Omega)}
$$

(2) Let V_{h} be the finite element space

$$
V_{h}:=\left\{v_{h} \in C^{0}(\bar{\Omega}):\left.v\right|_{T} \in \mathbb{P}^{1}, \quad \forall T \in \mathcal{T}_{h}\right\}
$$

where \mathcal{T}_{h} is a subdivision of Ω made of triangles of diameters $h>0$.
Consider the discrete problem of finding $u_{h}^{\epsilon} \in V_{h}$ such that

$$
a_{\epsilon}\left(u_{h}^{\epsilon}, v_{h}\right)=L\left(v_{h}\right), \quad \forall v_{h} \in V_{h} .
$$

(i) Show that u_{h}^{ϵ} exists and is unique in V_{h}; (ii) Prove the following error estimate

$$
\left\|\nabla\left(u^{\epsilon}-u_{h}^{\epsilon}\right)\right\|_{L^{2}(\Omega)}^{2}+\epsilon\left\|u^{\epsilon}-u_{h}^{\epsilon}\right\|_{L^{2}(\Omega)}^{2} \leq c\left(h^{2}+\epsilon h^{4}\right)\left|u^{\epsilon}\right|_{H^{2}(\Omega)}^{2},
$$

where c is a constant independent of h and ϵ.
Hint: you can use standard interpolation results without proof.
(3) Assume that $\left|u^{\epsilon}\right|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$ for a constant C independent of ϵ and derive an error estimate for $\left\|\nabla\left(u-u_{h}^{\epsilon}\right)\right\|_{L^{2}(\Omega)}$. What is the optimal choice for ϵ ?
Problem 2. Let T be the unit triangle in \mathbb{R}^{2}, with vertices $v_{1}=(0,0), v_{2}=(1,0)$, and $v_{3}=(0,1)$ and edges $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}$ and $e_{3}=v_{3} v_{1}$. Let $R T_{0}=\{(a+c x, b+c y): a, b, c \in \mathbb{R}\}$ (so that members of $R T_{0}$ are vector functions over T, and $\left.\left[\mathbb{P}_{0}\right]^{2} \subsetneq R T_{0} \subsetneq\left[\mathbb{P}_{1}\right]^{2}\right)$. Finally, let $\sigma_{i}(\vec{u})=\int_{e_{i}} \vec{u} \cdot \vec{n}_{i}$, where \vec{n}_{i} is the outward pointing unit normal vector to T on e_{i}, and let $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
(a) Show that $\left(T, R T_{0}, \Sigma\right)$ is unisolvent.
(b) Find a basis $\left\{\vec{\varphi}_{1}, \vec{\varphi}_{2}, \vec{\varphi}_{3}\right\}$ for $R T_{0}$ that is dual to Σ, i.e. $\sigma_{i}\left(\vec{\varphi}_{j}\right)=\delta_{i j}$ with $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise.
(c) Let $(\Pi \vec{u})(x)=\sum_{i=1}^{3} \sigma_{i}(\vec{u}) \vec{\varphi}_{i}(x), x \in T$ and $\vec{u} \in\left[H^{1}(T)\right]^{2}$. Show that

$$
\|\vec{u}-\Pi \vec{u}\|_{\left[L_{2}(T)\right]^{2}} \leq C \underset{1}{|u|_{\left[H^{1}(T)\right]^{2}}}{ }_{1}, u \in\left[H^{1}(T)\right]^{2} .
$$

Note: You may use standard analysis results such as trace and Poincaré inequalities without proof, but specify carefully which inequalities you are using.

Problem 3. Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain, $T>0$ be a given final time and \mathbf{b} be a given smooth vector valued function satisfying

$$
\operatorname{div}(\mathbf{b}(x, t))=0 \quad(x, t) \in \Omega \times[0, T] \quad \text { and } \quad \mathbf{b}(x, t)=0 \quad(x, t) \in \partial \Omega \times[0, T] .
$$

Consider the time-dependent problem

$$
\frac{\partial u}{\partial t}(x, t)+\mathbf{b}(x, t) \cdot \nabla u(x, t)=0, \quad(x, t) \in \Omega \times(0, T)
$$

together with the initial condition $u(x, 0)=u_{0}, x \in \Omega$.
Let \mathcal{T}_{h} be a subdivision of Ω made of triangles and

$$
V_{h}:=\left\{v_{h} \in C^{0}(\bar{\Omega}):\left.v_{h}\right|_{K} \in \mathbb{P}_{1} \forall K \in \mathcal{T}\right\} .
$$

Choose an integer $N \geq 2$, set $k:=T / N$ and $t_{n}:=n k$. Let $u_{h}^{0} \in V_{h}$ be a given approximation of u_{0}. For $1 \leq n \leq N$ define $u_{h}^{n} \in V_{h}$ recursively by the relations

$$
\frac{1}{k} \int_{\Omega}\left(u_{h}^{n}(x)-u_{h}^{n-1}(x)\right) v_{h}(x) d x+\int_{\Omega}\left(\mathbf{b}\left(x, t_{n}\right) \cdot \nabla u_{h}^{n}(x)\right) v_{h}(x) d x=0, \quad \forall v_{h} \in V_{h} .
$$

- Prove that given $u_{h}^{n} \in V_{h}$, the above finite dimensional system has a unique solution $u_{h}^{n+1} \in V_{h}$.
- Prove that for $1 \leq n \leq N$

$$
\left\|u_{h}^{n}\right\|_{L^{2}(\Omega)} \leq\left\|u_{h}^{0}\right\|_{L^{2}(\Omega)}
$$

- Is the matrix representing the finite dimensional system symmetric ? Justify your answer.

