APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER Numerical Analysis Part, 2 hours August 8, 2018

Problem 1. Let $\Omega := (0,1)^2$ and $u \in H^1_{\#}(\Omega) := \{u \in H^1(\Omega) : \int_{\Omega} u = 0\}$ be such that

$$a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv =: L(v), \qquad \forall v \in H^1_{\#}(\Omega),$$

where $f \in L^2(\Omega)$ is a given function satisfying $\int_{\Omega} f = 0$. Accept as a fact that there exists a unique weak solution $u \in H^1_{\#}(\Omega)$.

The goal of this exercise is to analyze a non-conforming finite element method relaxing the vanishing mean value condition.

(1) Consider the approximate problem: Given $0 < \epsilon \leq 1$, seek $u^{\epsilon} \in H^1(\Omega)$ such that

$$a_{\epsilon}(u^{\epsilon}, v) := \int_{\Omega} \nabla u^{\epsilon} \cdot \nabla v + \epsilon \int_{\Omega} u^{\epsilon} v = L(v), \qquad \forall v \in H^{1}(\Omega).$$

(i) Show that the above problem has a unique solution; (ii) show that $\int_{\Omega} u^{\epsilon} = 0$, i.e. $u^{\epsilon} \in H^{1}_{\#}(\Omega)$; (iii) Show that there exists a constant C independent of ϵ such that

$$\|\nabla (u - u^{\epsilon})\| \le C\epsilon \|f\|_{L^2(\Omega)}.$$

Hint: You can use (without proof) the following inequality: There exist a constant c such that for all $v \in H^1_{\#}(\Omega)$ there holds

$$\|v\|_{L^2(\Omega)} \le c \|\nabla v\|_{L^2(\Omega)}.$$

(2) Let V_h be the finite element space

$$V_h := \{ v_h \in C^0(\overline{\Omega}) : v|_T \in \mathbb{P}^1, \qquad \forall T \in \mathcal{T}_h \},\$$

where \mathcal{T}_h is a subdivision of Ω made of triangles of diameters h > 0.

Consider the discrete problem of finding $u_h^{\epsilon} \in V_h$ such that

$$a_{\epsilon}(u_h^{\epsilon}, v_h) = L(v_h), \quad \forall v_h \in V_h.$$

(i) Show that u_h^{ϵ} exists and is unique in V_h ; (ii) Prove the following error estimate

$$\|\nabla (u^{\epsilon} - u_{h}^{\epsilon})\|_{L^{2}(\Omega)}^{2} + \epsilon \|u^{\epsilon} - u_{h}^{\epsilon}\|_{L^{2}(\Omega)}^{2} \le c \ (h^{2} + \epsilon h^{4})|u^{\epsilon}|_{H^{2}(\Omega)}^{2},$$

where c is a constant independent of h and ϵ .

Hint: you can use standard interpolation results without proof.

(3) Assume that $|u^{\epsilon}|_{H^{2}(\Omega)} \leq C ||f||_{L^{2}(\Omega)}$ for a constant *C* independent of ϵ and derive an error estimate for $||\nabla(u - u_{h}^{\epsilon})||_{L^{2}(\Omega)}$. What is the optimal choice for ϵ ?

Problem 2. Let T be the unit triangle in \mathbb{R}^2 , with vertices $v_1 = (0,0)$, $v_2 = (1,0)$, and $v_3 = (0,1)$ and edges $e_1 = v_1v_2$, $e_2 = v_2v_3$ and $e_3 = v_3v_1$. Let $RT_0 = \{(a + cx, b + cy) : a, b, c \in \mathbb{R}\}$ (so that members of RT_0 are vector functions over T, and $[\mathbb{P}_0]^2 \subsetneq RT_0 \subsetneq [\mathbb{P}_1]^2$). Finally, let $\sigma_i(\vec{u}) = \int_{e_i} \vec{u} \cdot \vec{n}_i$, where \vec{n}_i is the outward pointing unit normal vector to T on e_i , and let $\Sigma = \{\sigma_1, \sigma_2, \sigma_3\}$.

(a) Show that (T, RT_0, Σ) is unisolvent.

(b) Find a basis $\{\vec{\varphi}_1, \vec{\varphi}_2, \vec{\varphi}_3\}$ for RT_0 that is dual to Σ , i.e. $\sigma_i(\vec{\varphi}_j) = \delta_{ij}$ with $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise.

(c) Let
$$(\Pi \vec{u})(x) = \sum_{i=1}^{3} \sigma_{i}(\vec{u})\vec{\varphi_{i}}(x), x \in T \text{ and } \vec{u} \in [H^{1}(T)]^{2}$$
. Show that
 $\|\vec{u} - \Pi \vec{u}\|_{[L_{2}(T)]^{2}} \leq C|u|_{[H^{1}(T)]^{2}}, u \in [H^{1}(T)]^{2}.$

Note: You may use standard analysis results such as trace and Poincaré inequalities without proof, but specify carefully which inequalities you are using.

Problem 3. Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain, T > 0 be a given final time and **b** be a given smooth vector valued function satisfying

$$\operatorname{div}(\mathbf{b}(x,t)) = 0 \quad (x,t) \in \Omega \times [0,T] \quad \text{and} \quad \mathbf{b}(x,t) = 0 \quad (x,t) \in \partial\Omega \times [0,T].$$

Consider the time-dependent problem

$$\frac{\partial u}{\partial t}(x,t) + \mathbf{b}(x,t) \cdot \nabla u(x,t) = 0, \qquad (x,t) \in \Omega \times (0,T)$$

together with the initial condition $u(x,0) = u_0, x \in \Omega$.

Let \mathcal{T}_h be a subdivision of Ω made of triangles and

$$V_h := \{ v_h \in C^0(\overline{\Omega}) : v_h |_K \in \mathbb{P}_1 \ \forall K \in \mathcal{T} \}.$$

Choose an integer $N \ge 2$, set k := T/N and $t_n := nk$. Let $u_h^0 \in V_h$ be a given approximation of u_0 . For $1 \le n \le N$ define $u_h^n \in V_h$ recursively by the relations

$$\frac{1}{k} \int_{\Omega} (u_h^n(x) - u_h^{n-1}(x)) v_h(x) \, dx + \int_{\Omega} (\mathbf{b}(x, t_n) \cdot \nabla u_h^n(x)) v_h(x) \, dx = 0, \qquad \forall v_h \in V_h.$$

- Prove that given u_hⁿ ∈ V_h, the above finite dimensional system has a unique solution u_hⁿ⁺¹ ∈ V_h.
 Prove that for 1 ≤ n ≤ N

$$\|u_h^n\|_{L^2(\Omega)} \le \|u_h^0\|_{L^2(\Omega)}$$

• Is the matrix representing the finite dimensional system symmetric ? Justify your answer.