Applied Analysis/Numerical Analysis Qualifying Exam

January 10, 2019

Numerical Analysis Part, 2 hours

Name

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Question I.

Consider the variational problem: find

$$
\begin{equation*}
u \in H^{1}(\Omega) \equiv \mathbb{V}, \quad \text { s.t. } a(u, v)=L(v) \text { for all } v \in \mathbb{V} \equiv H^{1}(\Omega) \tag{1}
\end{equation*}
$$

Here $\Omega=(0,1) \times(0,1), \Gamma=\partial \Omega$ is its boundary,

$$
\begin{equation*}
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Gamma} u v \mathrm{~d} s, \quad \text { and } \quad L(v)=\int_{\Gamma} g v \mathrm{~d} s \tag{2}
\end{equation*}
$$

where g is a given smooth function of Γ.
(a) Derive the strong form of problem (1).
(b) Let \mathcal{T}_{h} be a shape-regular partitioning of Ω into triangles. Introduce the finite dimensional space \mathbb{V}_{h} consisting of continuous piecewise linear polynomials over \mathcal{T}_{h}. Show that $\mathbb{V}_{h} \subset \mathbb{V}$.
(c) Consider the finite element approximation of (1): find

$$
\begin{equation*}
u_{h} \in \mathbb{V}_{h}, \quad \text { s.t. } \quad a\left(u_{h}, v\right)=L(v) \quad \text { for all } \quad v \in \mathbb{V}_{h} \tag{3}
\end{equation*}
$$

State (not prove) the optimal estimate for the error $\left\|u-u_{h}\right\|_{\mathbb{V}}$ assuming that the solution to (1) belongs to the Sobolev space $H^{2}(\Omega)$. Derive a bound for $\left\|u-u_{h}\right\|_{L^{2}(\Omega)}$ under the assumption of full regularity of the problem (1).
(d) Assume that in the evaluation of the boundary term $\int_{\Gamma} u_{h} v \mathrm{~d} s$ you have applied the composite trapezoidal quadrature rule:

$$
\int_{\Gamma} f \mathrm{~d} s \approx \sum_{e \in \Sigma} \frac{|e|}{2}\left(f\left(e_{1}\right)+f\left(e_{2}\right)\right):=\sum_{e \in \Sigma} Q_{e}(f)
$$

where Σ is the set of boundary edges and for $e \in \Sigma, e_{1}, e_{2}$ are the endpoints of e (order is irrelevant) and $|e|$ is the length of e. In this way you have generated the approximate bilinear from

$$
a_{h}\left(u_{h}, v\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v \mathrm{~d} x+\sum_{e \in \Sigma} Q_{e}\left(u_{h} v\right)
$$

State the FEM using this approximation (this is one of the cases of variational "crimes"). Show that

$$
a_{h}\left(v_{h}, v_{h}\right) \geq c\left\|v_{h}\right\|_{\mathbb{V}}^{2}, \quad \forall v_{h} \in \mathbb{V}_{h}
$$

where c is a constant only depending on Ω.
Hint: Recall that there exists a constant C only depending on Ω such that for all $v \in \mathbb{V}$

$$
C \int_{\Omega} v^{2} \leq \int_{\Omega}|\nabla v|^{2}+\int_{\Gamma} v^{2}
$$

(e) Show that

$$
\left|a\left(u_{h}, v\right)-a_{h}\left(u_{h}, v\right)\right| \leq C h\left\|u_{h}\right\|_{\mathbb{V}}\|v\|_{\mathbb{V}} \quad \text { for } \quad u_{h}, v \in \mathbb{V}_{h},
$$

where C is a constant only depending on Ω.

Question II.

Consider the following initial boundary value problem: find $u(\cdot, t):=u(t) \in \mathbb{V}$, with $\mathbb{V}:=H_{0}^{1}(\Omega)$, s.t.

$$
\begin{equation*}
\left(\frac{d}{d t} u(t), \phi\right)+(\nabla u(t), \nabla \phi)=(f(t), \phi), \quad \forall \phi \in \mathbb{V}, \quad t>0, \quad u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{4}
\end{equation*}
$$

where $u_{0}: \Omega \rightarrow \mathbb{R}$ and $f: \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ are given functions and $f(t):=f(\cdot, t)$.
Let $\mathbb{V}_{h} \subset \mathbb{V}:=H_{0}^{1}(\Omega)$ consists of continuous piecewise linear functions over a partition \mathcal{T}_{h} of Ω into triangles.
(a) Consider the semi-discrete (in space) Galerkin finite element approximation of (4): find $u_{h}(t) \in \mathbb{V}_{h}$ s.t.

$$
\begin{equation*}
\left(\frac{d}{d t} u_{h}(t), \phi\right)+\left(\nabla u_{h}(t), \nabla \phi\right)=(f(t), \phi), \quad \forall \phi \in \mathbb{V}_{h}, \quad t>0, \quad u_{h}(0)=R_{h} u_{0} \tag{5}
\end{equation*}
$$

where $R_{h} u_{0} \in \mathbb{V}_{h}$ satisfies

$$
\left(\nabla R_{h} u_{0}, \nabla \phi\right)=\left(\nabla u_{0}, \nabla \phi\right), \quad \forall \phi \in \mathbb{V}_{h}
$$

Prove that the solution $u_{h}(t)$ satisfies the a priori estimate

$$
\begin{equation*}
\left\|u_{h}(t)\right\|^{2} \leq\left\|u_{h}(0)\right\|^{2}+c_{0} \int_{0}^{t}\|f(s)\|^{2} d s, \quad t>0 \tag{6}
\end{equation*}
$$

where c_{0} is the constant in the Poincaré inequality $\|v\|^{2} \leq c_{0}\|\nabla v\|^{2}$.
(b) Let $k>0$ and set $t_{n}=n k$ for $n=0,1, \ldots$. The implicit Euler scheme approximating the problem (5) is given by: Set $U^{0}=R_{h} u(0)=u_{h}(0)$, find $U^{n} \in \mathbb{V}_{h}$ recursively such that for $n=1, \ldots$ it satisfies

$$
\left(\frac{U^{n}-U^{n-1}}{k}, \phi\right)+\left(\nabla U^{n}, \nabla \phi\right)=\left(f\left(t_{n}\right), \phi\right), \forall \phi \in \mathbb{V}_{h}
$$

Prove an a priori estimate for this fully discrete method that is similar to estimate (6):

$$
\left\|U^{n}\right\|^{2} \leq\left\|U^{0}\right\|^{2}+c_{0} \sum_{j=1}^{n} k\left\|f\left(t_{j}\right)\right\|^{2}
$$

Derive an a priori estimate for the error $e=u_{h}\left(t_{n}\right)-U^{n}$.

Question III.

Let Q be the three dimensional cube

$$
Q=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 0 \leq x_{i} \leq 1, \quad i=1,2,3\right\}
$$

and let \mathcal{Q}_{2} be the space of polynomials of degree 2 in each direction. Consider the point value evaluation functionals defined for any $p \in \mathcal{Q}_{2}$

$$
\sigma_{i, j, k}(p)=p(i / 2, j / 2, k / 2)
$$

for $i, j, k=0,1,2$ Show that this choice of Q, \mathcal{Q}_{2}, and degrees of freedom $\left\{\sigma_{i, j, k}\right\}$ is unisolvent.
Hint: you can use without proof the following result:
Let p be a polynomial of degree $d \geq 1$ that vanishes on the hyperplane given by the relation $h(x)=0$. Then $p(x)=h(x) q(x)$, where q is a polynomial of degree $d-1$.

