APPLIED ANALYSIS/NUMERICAL ANALYSIS
 QUALIFYING EXAMINATION
 August 2009

Part 1: Applied Analysis

Work 3 out of 4 problems of this part of the exam.

Policy on Misprints. The qualifying examination committee tries to proofread the examinations as carefully as possible. Nevertheless, there may be a few misprints. If you are convinced that a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Q1. Let L be the Sturm-Liouville operator

$$
L=\frac{d}{d x}\left[p(x) \frac{d}{d x}\right]+q(x)
$$

and let D be the boundary conditions operator

$$
D u=\left\{\begin{array}{l}
\alpha_{1} u^{\prime}(0)+\beta_{1} u(0) \\
\alpha_{2} u^{\prime}(l)+\beta_{2} u(l)
\end{array}\right.
$$

Let $f(x)$ be a continuous function on $[0, l]$ and assume that the problem $L u=f, D u=$ 0 is regular, i.e., the homogeneous problem has only the trivial solution.
(a) List the properties of a Green's function $g(x, y)$ which satisfies the $2^{\text {th }}$ order equation

$$
L_{x} g(x, y)=\delta(x-y)
$$

in the sense of distributions.
(b) Given the existence of a Green's function, write down a solution to

$$
L_{x} u(x)=f(x), \quad x \in[0, l] .
$$

(c) Describe for which complex λ one can find a Green's function for the differential operator

$$
L u=u^{\prime \prime}+\lambda u, \quad u \in L^{2}(-\infty, \infty)
$$

and for those λ, find the Green's function.

Q2. (a) State the Fredholm Alternative Theorem for bounded linear operators on Hilbert space.
(b) Consider the integral equation

$$
(L u)(t)=u(t)+\lambda \int_{0}^{1} s u(s) d s=f(t) .
$$

where $u, f \in L^{2}[0,1]$.
Explain why L has closed range for all λ, find the values of λ for which L is invertible and write an expression for L^{-1}. (Hint: given f , "guess" the solution u.)
(c) For those λ where L is not invertible, describe under what conditions one can solve $L u=f$ and how one might do this.

Q3. (a) State the Contraction Mapping Theorem.
(b) Prove that the Fredholm integral equation $x=F x$ has a solution where

$$
(F x)(t)=\int_{0}^{1} K(s, t, x(s)) d s+w(t), \quad t \in[0,1]
$$

and where
i. x and w are in $C[0,1],\|x\|=\max _{t}|x(t)|$.
ii. $K(s, t, r)$ is continuous on $0 \leq s, t \leq 1,-\infty<r<\infty$
iii. $|K(s, t, \xi)-K(s, t, \eta)| \leq \theta|\xi-\eta|, \quad 0<\theta<1$.
(c) Is the solution to (b) unique? Prove or disprove.
(d) Describe an iteration procedure to numerically solve the equation in (b).

Q4. Let $S^{h}(3,1)$ denote the finite element space of cubic splines on $[0,1]$. The space $S^{h}(3,1)$ is spanned by two sets of cubic polynomials

$$
\phi_{j}(x)=\phi\left(\frac{x-x_{j}}{h}\right), \quad \psi_{j}(x)=h \psi\left(\frac{x-x_{j}}{h}\right),
$$

for $j=0,1,2, \cdots, N$ where $h=\frac{1}{N}, x_{j}=\frac{j}{N}$ and

$$
\phi(x)=(|x|-1)^{2}(2|x|+1), \quad \psi(x)=x(|x|-1)^{2} .
$$

(a) Define linear projection on the space $C[0,1]$.
(b) Let $\phi_{k}(x), k=0, \cdots, N$ be the piecewise linear finite element basis functions satisfying $\phi_{k}(j / N)=\delta_{j, k}$. Show that

$$
P f=\sum_{j=0}^{N} f(j / N) \phi_{j}(x)
$$

is a projection on the space of continuous functions $C[0,1]$.
(c) Define a projection on $C^{1}[0,1]$, the space of continuously differentiable functions, using cubic splines.

APPLIED/NUMERICAL ANALYSIS QUALIFIER:
 NUMERICAL ANALYSIS PART

August 13, 2009
Problem 1 Consider the following finite element triple:

- $K=$ a rectangle with vertices $\left\{a^{i}\right\}, i=1,2,3,4$.
- $P=Q^{3}=\operatorname{span}\left\{x_{1}^{i} x_{2}^{j} ; i, j=0, \ldots, 3\right\}$.
- $N=\left\{p\left(a^{i}\right), p_{1}\left(a^{i}\right), p_{2}\left(a^{i}\right), p_{12}\left(a^{i}\right), i=1,2,3,4\right\}$. (Here p_{i} denotes differentiation with respect to x_{i}).
(a) Show that the above finite element is unisolvent.
(b) What do you need to do to check if the above element with a rectangular mesh results in a C^{1} finite element space?
(c) Does the above element (with a rectangular mesh) result in a C^{1} finite element space? (Explain your answer).

Problem 2 Consider the Neumann Problem:

$$
\begin{align*}
-\Delta u & =f \text { in } \Omega \\
\frac{\partial u}{\partial n} & =g \text { on } \partial \Omega . \tag{2.1}
\end{align*}
$$

Here Ω is a bounded domain in \mathbb{R}^{2} and f and g are suitably smooth.
(a) Derive a weak form of the above problem using a test function in $H^{1}(\Omega)$.
(b) Discuss when the weak form of Part (a) has a solution and if it is unique.
(c) Describe a variational formulation of (2.1) in terms of an appropriate Hilbert space V. Be sure to explicitly define V.
(d) Prove coercivity of the form of Part (a) on the V of Part (c) when $\Omega=(0,1)^{2}$.

Problem 3 Let $\Omega_{e}=\left\{x \in \mathbb{R}^{2}:\|x\|>1\right\}$. Show that the Poincaré inequality does not hold in $H_{0}^{1}\left(\Omega_{e}\right)$, i.e., there does not exist a constant $c>0$ satisfying

$$
c\|u\|_{L^{2}\left(\Omega_{e}\right)}^{2} \leq \int_{\Omega_{e}}\|\nabla u\|^{2} d x \text { for all } u \in H_{0}^{1}\left(\Omega_{e}\right) .
$$

The space $H_{0}^{1}\left(\Omega_{e}\right)$ is the completion of $C_{0}^{\infty}\left(\Omega^{c}\right)$ in the norm

$$
\|v\|_{H^{1}\left(\Omega^{c}\right)}=\left(\|v\|_{L^{2}\left(\Omega^{c}\right)}^{2}+\|\nabla v\|_{\left(L^{2}\left(\Omega^{c}\right)\right)^{2}}^{2}\right)^{1 / 2}
$$

(Hint: Consider dilating a fixed function.)

