
APPLIED ANALYSIS/NUMERICAL ANALYSIS
QUALIFYING EXAMINATION

August 2009

Part 1: Applied Analysis

Work 3 out of 4 problems of this part of the exam.

Policy on Misprints. The qualifying examination committee tries to proofread the exam-

inations as carefully as possible. Nevertheless, there may be a few misprints. If you are

convinced that a problem has been stated incorrectly, indicate your interpretation in writing

your answer. In such cases, do not interpret the problem so that it becomes trivial.

Q1. Let L be the Sturm-Liouville operator

L =
d

dx
[p(x)

d

dx
] + q(x)

and let D be the boundary conditions operator

Du =

{

α1u
′(0) + β1u(0)

α2u
′(l) + β2u(l)

Let f(x) be a continuous function on [0, l] and assume that the problem Lu = f, Du =
0 is regular, i.e., the homogeneous problem has only the trivial solution.

(a) List the properties of a Green’s function g(x, y) which satisfies the 2th order equa-
tion

Lxg(x, y) = δ(x − y)

in the sense of distributions.

(b) Given the existence of a Green’s function, write down a solution to

Lxu(x) = f(x), x ∈ [0, l].

(c) Describe for which complex λ one can find a Green’s function for the differential
operator

Lu = u′′ + λu, u ∈ L2(−∞,∞)

and for those λ, find the Green’s function.

Q2. (a) State the Fredholm Alternative Theorem for bounded linear operators on Hilbert
space.
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(b) Consider the integral equation

(Lu)(t) = u(t) + λ

∫ 1

0

su(s)ds = f(t).

where u, f ∈ L2[0, 1].
Explain why L has closed range for all λ, find the values of λ for which L is
invertible and write an expression for L−1. (Hint: given f, “guess” the solution
u.)

(c) For those λ where L is not invertible, describe under what conditions one can
solve Lu = f and how one might do this.

Q3. (a) State the Contraction Mapping Theorem.

(b) Prove that the Fredholm integral equation x = Fx has a solution where

(Fx)(t) =

∫ 1

0

K(s, t, x(s))ds + w(t), t ∈ [0, 1]

and where

i. x and w are in C[0, 1], ‖x‖ = maxt|x(t)|.

ii. K(s, t, r) is continuous on 0 ≤ s, t ≤ 1,−∞ < r < ∞

iii. |K(s, t, ξ) − K(s, t, η)| ≤ θ|ξ − η|, 0 < θ < 1.

(c) Is the solution to (b) unique? Prove or disprove.

(d) Describe an iteration procedure to numerically solve the equation in (b).

Q4. Let Sh(3, 1) denote the finite element space of cubic splines on [0, 1]. The space Sh(3, 1)
is spanned by two sets of cubic polynomials

φj(x) = φ(
x − xj

h
), ψj(x) = hψ(

x − xj

h
),

for j = 0, 1, 2, · · · , N where h = 1
N

, xj = j
N

and

φ(x) = (|x| − 1)2(2|x| + 1), ψ(x) = x(|x| − 1)2.

(a) Define linear projection on the space C[0, 1].

(b) Let φk(x), k = 0, · · · , N be the piecewise linear finite element basis functions
satisfying φk(j/N) = δj,k. Show that

Pf =
N

∑

j=0

f(j/N)φj(x)

is a projection on the space of continuous functions C[0, 1].

(c) Define a projection on C1[0, 1], the space of continuously differentiable functions,
using cubic splines.
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Problem 1 Consider the following finite element triple:

• K =a rectangle with vertices {ai}, i = 1, 2, 3, 4.

• P = Q3 = span{xi
1x

j
2 ; i, j = 0, . . . , 3}.

• N = {p(ai), p1(a
i), p2(a

i), p12(a
i), i = 1, 2, 3, 4}. (Here pi denotes differentiation with

respect to xi).

(a) Show that the above finite element is unisolvent.

(b) What do you need to do to check if the above element with a rectangular mesh results
in a C1 finite element space?

(c) Does the above element (with a rectangular mesh) result in a C1 finite element space?
(Explain your answer).

Problem 2 Consider the Neumann Problem:

−∆u = f in Ω

∂u

∂n
= g on ∂Ω.

(2.1)

Here Ω is a bounded domain in R
2 and f and g are suitably smooth.

(a) Derive a weak form of the above problem using a test function in H1(Ω).

(b) Discuss when the weak form of Part (a) has a solution and if it is unique.

(c) Describe a variational formulation of (2.1) in terms of an appropriate Hilbert space V .
Be sure to explicitly define V .

(d) Prove coercivity of the form of Part (a) on the V of Part (c) when Ω = (0, 1)2.

Problem 3 Let Ωe = {x ∈ R
2 : ‖x‖ > 1}. Show that the Poincaré inequality does not hold

in H1
0 (Ωe), i.e., there does not exist a constant c > 0 satisfying

c‖u‖2
L2(Ωe)

≤

∫

Ωe

‖∇u‖2 dx for all u ∈ H1
0 (Ωe).

The space H1
0 (Ωe) is the completion of C∞

0 (Ωc) in the norm

‖v‖H1(Ωc) =

(

‖v‖2
L2(Ωc) + ‖∇v‖2

(L2(Ωc))2

)1/2

.

(Hint: Consider dilating a fixed function.)
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