Applied Mathematics Qualifying Exam May 22, 2006

Instructions: Do any 7 of the 9 problems in this exam. Show all of your work clearly. Please indicate which 2 of the 9 problems you are skipping.

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem in such a way that it becomes trivial.

- 1. Let $\{\phi_n(x)\}_{n=0}^{\infty}$ be a set of polynomials orthogonal with respect to a weight function w(x) on a domain [a,b]. Assume that the degree of ϕ_n is n, and that coefficient of x^n in $\phi_n(x)$ is $k_n > 0$.
 - (a) Show that ϕ_n is orthogonal to all polynomials of degree n-1 or less
 - (b) Show that the set $\{\phi_n(x)\}_{n=0}^{\infty}$ is the same, up to multiples, as the one gotten by using the Gram-Schmidt process.
 - (c) Show that the polynomials satisfy the recurrence relation below; find A_n in terms of the k_n 's.

$$\phi_{n+1}(x) = (A_n x + B_n)\phi_n(x) + C_n \phi_{n-1}(x)$$

- 2. Let \mathcal{H} be a complex Hilbert space, with $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ being the inner product and norm.
 - (a) State and prove the Projection (Decomposition) Theorem
 - (b) State and prove the Fredholm Alternative. (Hint: use the Projection Theorem.)
 - (c) Take $\mathcal{H}=L^2[0,1]$. Let $k(x,y)=xy^3$ and let $Lu(x)=u(x)+\lambda\int_0^1k(x,y)u(y)dy$, where $\lambda\in\mathbb{R}$. Find the adjoint of L. Determine when Lu=f has a solution. (You may assume that L has closed range.)

- 3. Among all curves y = f(x), $-1 \le x \le 1$, f(-1) = f(1) = 0, with fixed length L > 2, find the one that minimizes the surface area formed when the curve is rotated about the x-axis.
- 4. Consider $I_0(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{x \cos(\theta)} d\theta$.
 - (a) Show that I_0 satisfies xy'' + y' xy = 0, which is Bessel's modified equation of order 0.
 - (b) Obtain the asymptotic formula $I_0(x) \sim \frac{e^x}{\sqrt{2\pi x}}$, as $x \to \infty$.
- 5. Let \mathcal{H} be a complex Hilbert space, with $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ being the inner product and norm.
 - (a) Define these terms (all for \mathcal{H}): bounded linear operator, adjoint of a bounded linear operator, compact operator.
 - (b) Show that if L is a bounded, self-adjoint linear operator on \mathcal{H} , then $||L|| = \sup_{\|u\|=1} |\langle Lu, u \rangle|$. (Hint: look at $\langle L(u+v), u+v \rangle \langle L(u-v), u-v \rangle$.)
 - (c) Prove this: If K is a compact, self-adjoint linear operator on a Hilbert space \mathcal{H} , then either ||K|| or -||K|| is an eigenvalue of K.
- 6. Let \mathcal{S} be Schwartz space and \mathcal{S}' be the space of tempered distributions. You are given that polynomials are in \mathcal{S}' and that $\psi = \phi'$ for some $\phi \in \mathcal{S}$ if and only if $\int_{-\infty}^{\infty} \psi(x) dx = 0$.
 - (a) Define \mathcal{S} and give the semi-norm topology for it. In addition, define \mathcal{S}' .
 - (b) Show that if $T \in \mathcal{S}'$, then $\widehat{T^{(k)}} = (-i\omega)^k \widehat{T}$, where $k = 1, 2, \ldots$ (Use the Fourier transform convention $\widehat{f}(\omega) = \int_{\mathbb{R}} f(t)e^{i\omega t}dt$.)
 - (c) Prove: Let $T \in \mathcal{S}'$ and $n \in \mathbb{Z}_+$. Then $\omega^{n+1}\widehat{T} = 0$ if and only if T is a polynomial of degree n. (Hint: use induction.)
- 7. Consider the operator Lu = -u'' defined on functions in $L^2[0, \infty)$ having u'' in $L^2[0, \infty)$ and satisfying the boundary condition that u(0) = 0; that is, L has the domain

$$\mathcal{D}_L = \{ u \in L^2[0, \infty) \mid u'' \in L^2[0, \infty) \text{ and } u(0) = 0 \}.$$

- (a) Find the Green's function $G(x, \xi; z)$ for $-G'' zG = \delta(x \xi)$, with $G(0, \xi; z) = 0$. (This is the kernel for the resolvent $(L zI)^{-1}$.)
- (b) Employ the spectral theorem to obtain the sine transform formulas,

$$F(\mu) = \int_0^\infty f(x) \sin(\mu x) dx \text{ and } f(x) = \frac{2}{\pi} \int_0^\infty F(\mu) \sin(\mu x) d\mu.$$

- 8. Do one of the following.
 - (a) State and prove the Contraction Mapping Theorem.
 - (b) Sketch a proof of the following: If f is a piecewise C^1 , 2π -periodic function, and if $S_N = \sum_{n=-N}^N c_n e^{inx}$ is the N^{th} partial sum of the Fourier series for f, then, for every $x \in \mathbb{R}$,

$$\lim_{N \to \infty} S_N(x) = \frac{f(x^+) + f(x^-)}{2}.$$

(c) Sketch a proof of this 1D Sobolev theorem: If u is a distribution having a distributional derivative u' in $L^2[a,b]$, then $u \in C[a,b]$ and there is a constant C > 0 that depends only on b-a for which

$$||u||_{C[a,b]} \le C||u||_{H^1[a,b]}, \quad ||u||_{H^1[a,b]}^2 := \int_a^b (|u|^2 + |u'|^2) dx.$$

- 9. Let $p \in C^{(2)}[0,1]$, and $q,w \in C[0,1]$, with p,q,w > 0. Consider the Sturm-Liouville (SL) eigenvalue problem, $(p\phi')' q\phi + \lambda w\phi = 0$, subject to $\phi(0) = 0$ and either (A) $\phi(1) = 0$ or (B) $\phi'(1) + \phi(1) = 0$. In addition, for $\phi \in C^{(1)}[0,1]$, let $D[\phi] := \int_0^1 (p\phi'^2 + q\phi^2) dx$ and $H[\phi] := \int_0^1 w\phi^2 dx$.
 - (a) Show that minimizing the functional $D[\phi]$, subject to the constraint $H[\phi] = 1$ and boundary conditions $\phi(0) = \phi(1) = 0$, yields the SL problem (A).
 - (b) State the variational problem that will yield the SL problem (B). Verify that your answer is correct by calculating the variational (Fréchet) derivative and setting it equal to 0.
 - (c) State the MINIMAX Principle. Use it to show that the n^{th} eigenvalue of the SL problem (A) is larger than or equal to the n^{th} eigenvalue of the SL problem (B).