Applied Analysis Qualifying Exam May 22, 2007

Instructions: Do any 7 of the 9 problems in this exam. Show all of your work clearly. Please indicate which 2 of the 9 problems you are skipping.

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem in such a way that it becomes trivial.

- 1. State and prove one of the following theorems:
 - (a) The Weierstrass approximation theorem (sketch of proof suffices).
 - (b) The Hilbert space projection (decomposition) theorem.
 - (c) The Shannon sampling theorem.
- 2. Suppose that $f(\theta)$ is 2π -periodic function in $C^{(1)}(\mathbb{R})$, and that f'' is piecewise continuous and 2π -periodic. Let c_k denote the k^{th} (complex) Fourier coefficient for f, and let $f_n(\theta) = \sum_{k=-n}^n c_k e^{ik\theta}$ be the n^{th} partial sum of the Fourier series for f, $n \geq 1$.
 - (a) For $k \neq 0$, show that the Fourier coefficient c_k satisfies the bound

$$|c_k| \le \frac{1}{2\pi |k|^2} ||f''||_{L^1[0,2\pi]}.$$

(b) Show that both of these hold for f. (The constants are independent of f and n.)

$$||f-f_n||_{L^2[0,2\pi]} \le C_1 \frac{||f''||_{L^1[0,2\pi]}}{\sqrt{n^3}} \text{ and } ||f-f_n||_{C[0,2\pi]} \le C_2 \frac{||f''||_{L^1[0,2\pi]}}{n}.$$

- 3. Consider the integral operator $Ku = \int_a^b k(x,\xi)u(\xi)d\xi$.
 - (a) Sketch a proof of this: If K is a Hilbert-Schmidt operator, then K is compact.

(b) Let $Ku = \int_0^{\pi} k(x,\xi)u(\xi)d\xi$, where

$$k(x,\xi) = \begin{cases} x - \pi & 0 \le \xi \le x \le \pi, \\ \xi - \pi & 0 \le x < \xi \le \pi. \end{cases}$$

Explain why this K is compact. Show that it is self adjoint and find the eigenvalues and eigenfunctions for K. (Hint: convert the integral equation into a differential equation plus boundary conditions.)

- (c) With K as in part (b), for what values of λ will $u = f + \lambda K u$ have a solution for all $f \in L^2[a, b]$? Why?
- 4. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.
 - (a) Define convergence in \mathcal{D} and in \mathcal{D}' .
 - (b) Show that every $\psi \in \mathcal{D}$ satisfies $\psi(x) = (x^2 \varphi(x))'$ for some $\varphi \in \mathcal{D}$ if and only if

$$\int_{-\infty}^{\infty} \psi(x)dx = \int_{0}^{\infty} \psi(x)dx = \psi(0) = 0.$$

- (c) Use the result above to find all $t \in \mathcal{D}'$ that solve $x^2t' = 0$, in the sense of distributions.
- 5. A mass m is subject to a force due to a radial potential V = V(r), where r is the radius in spherical coordinates. The angles θ and φ are the colatitude and longitude, repectively.
 - (a) Find the system's Lagrangian in spherical coordinates.
 - (b) Find the momenta p_r , p_θ and p_φ conjugate to r, θ and φ , respectively, and also the Hamiltonian $H(r, \theta, \varphi, p_r, p_\theta, p_\varphi)$ for the system.
 - (c) Write down Hamilton's equations for the system. Use them to show that H is a constant of the motion.
- 6. Use Laplace's method and Watson's lemma to find the first two terms of an asymptotic expansion for

$$I(x) = \int_0^\infty e^{-x \cosh(t)} \sinh^{1/2}(t) dt, \ x \to +\infty.$$

- 7. Let $\sigma \geq 0$ and consider the Sturm-Liouville problem $(xu')' + \lambda xu = 0$, with u(0) bounded and $u'(1) + \sigma u(1) = 0$.
 - (a) Show that this S-L problem has the solution $u = J_0(\sqrt{\lambda}x)$, where J_0 is the 0 order Bessel function, and where the eigenvalues must satisfy $\sigma J_0(\sqrt{\lambda}) + \sqrt{\lambda} J_0'(\sqrt{\lambda}) = 0$.
 - (b) Write out the functional that must be minimized by u, subject to the constraint $H(u) = \int_0^1 u^2(x)xdx = 1$, to get the S-L problem and the boundary conditions.
 - (c) Use the Courant-Fischer minimax principle to determine how the k^{th} eigenvalue $\lambda_k(\sigma)$ behaves as σ increases from 0.
- 8. Consider the Schrödinger operator with a δ -function potential, $Hu = -u'' + \alpha \delta(x)u$, where $\alpha > 0$. For a plane wave incoming from $-\infty$, find the reflection and transmission coefficients.
- 9. Let Lu = -x(xu')' be defined on functions satisfying the boundary condition that u(0) = 0, and let $\underline{\mathcal{H}}$ be the weighted L^2 space, with the inner product $\langle f, g \rangle = \int_0^\infty f(x) \overline{g(x)} \frac{dx}{x}$. You are given that L will be self adjoint if its domain is

$$\mathcal{D}_L = \{ u \in \mathcal{H} \mid Lu \in \mathcal{H} \text{ and } u(0) = 0 \}.$$

- (a) Find the Green's function $G(x,\xi;z)$ for $-x(xG')'-zG=\delta(x-\xi)$, with $G(0,\xi;z)=0, G(x,\xi;z)\in L^2[0,\infty)$. (This is the kernel for the resolvent $(L-zI)^{-1}$.)
- (b) Employ the spectral theorem (and Stone's formula) to obtain the Mellin transform formulas,

$$F(s) = \int_0^\infty x^{s-1} f(x) dx \text{ and } f(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} x^{-s} F(s) ds.$$