Applied Analysis Qualifying Exam

May 21, 2008

Instructions: Do any 7 of the 9 problems in this exam. Show all of your work clearly. Please indicate which 2 of the 9 problems you are skipping.

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem in such a way that it becomes trivial.

1. Consider the function $I(x):=\int_{0}^{1} t^{x}(2-t)^{x} d t$. Use Laplace's method and Watson's lemma to find the asymptotic expansion $I(x)$ to order $\mathcal{O}\left(x^{-2}\right)$, for $x \rightarrow \infty$.
2. Let \mathcal{S} be Schwartz space, \mathcal{S}^{\prime} be the space of tempered distributions, and let $T(x)=(x)_{+}-3(x-2)_{+}+2(x-3)_{+}$, where $(x)_{+}=\left\{\begin{array}{ll}x & 0 \leq x \\ 0 & x<0\end{array}\right.$.
(a) Define \mathcal{S} and give the semi-norm topology for it. In addition, define \mathcal{S}^{\prime}.
(b) Find the distributional second derivative, $T^{\prime \prime}$, and the Fourier transform of $T^{\prime \prime}$. Use these results to find the Fourier transform of T.
3. Consider a functional $J[u]$, where $u \in V$, and V is a Banach space.
(a) Define the Frechét derivative and the Gâteaux derivative for $J[u]$. Illustrate the difference between them with a simple two variable example.
(b) Consider the constrained functional,

$$
J[u]=\int_{0}^{1} p u^{\prime 2} d x+\sigma u(1)^{2}, \quad H[u]=\int_{0}^{1} u^{2} d x=1
$$

where $u \in C^{(1)}[0,1], u(0)=0$, and $\sigma>0$. Calculate the variational derivative of the problem, using Lagrange multipliers. Find the Sturm-Liouville eigenvalue problem associated with it.
(c) How does the second eigenvalue of this problem compare with the second eigenvalue of the corresponding Dirichlet problem, i.e., $u(0)=u(1)=0$? Explain your answer.
4. Let \mathcal{H} be a Hilbert space with inner product and norm given by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$. You may assume that \mathcal{H} is a real Hilbert space.
(a) State and prove the Riesz Representation Theorem.
(b) Suppose that $\mathcal{H} \subset C[0,1]$ and that, for $f \in \mathcal{H},\|f\|_{C[0,1]} \leq\|f\|$. Show that for every $\xi \in[0,1]$ there is a function $K_{\xi}(\cdot) \in \mathcal{H}$ for which $f(\xi)=\left\langle f, K_{\xi}\right\rangle$.
(c) Consider N distinct points $0 \leq \xi_{1}<\xi_{2}<\cdots<\xi_{N} \leq 1$ and let $\mathcal{U}:=\operatorname{span}\left\{K_{\xi_{j}}\right\}_{j=1}^{N}$, which is a finite dimensional subspace of \mathcal{H}. Show that for any $f \in \mathcal{H}$, the orthogonal projection of f onto \mathcal{U}, $\tilde{f}=\operatorname{Proj}_{\mathcal{U}} f$, satisfies $\tilde{f}\left(\xi_{j}\right)=f\left(\xi_{j}\right), j=1, \ldots, N$.
5. The degree n Chebyshev polynomial can be defined via the Rodrigues' formula,

$$
T_{n}(x)=(-2)^{n} \frac{n!}{(2 n)!}\left(1-x^{2}\right)^{1 / 2} \frac{d^{n}}{d x^{n}}\left(\left[1-x^{2}\right]^{n-1 / 2}\right) .
$$

(a) Using the Rodrigues' formula, show that, in the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x)\left(1-x^{2}\right)^{-1 / 2} d x, T_{n}$ is orthogonal to all polynomials of degree $n-1$ or less.
(b) Show that the generating function for the Chebyshev polynomials is

$$
\Phi(x, w):=\sum_{n=0}^{\infty} T_{n}(x) w^{n}=\frac{1-x w}{1-2 x w+w^{2}} .
$$

6. Do one of the following.
(a) State the Weierstrass approximation theorem and sketch a proof.
(b) Let \mathcal{H} be a complex, separable Hilbert space with inner product and norm given by $\langle\cdot, \cdot \cdot\rangle$ and $\|\cdot\|$. If L is a self-adjoint operator defined on a domain $D \subseteq \mathcal{H}$, show that L has no residual spectrum and that its spectrum is real.
7. Consider the Schrödinger operator $H u=-u^{\prime \prime}+q(x) u$, with a compactly supported, continuous potential $q(x) \geq 0$. Show that the left and right transmission coefficients are equal; that is, $T_{L}(k)=T_{R}(k)$.
8. Let L to be the self-adjoint operator $L u=-u^{\prime \prime}$, where $D(L)=\{u \in$ $\left.L^{2}(\mathbb{R}): u^{\prime \prime} \in L^{2}(\mathbb{R})\right\}$.
(a) Find the Green's function for L.
(b) Employ Stone's formula (i.e., the spectral theorem for self-adjoint operators) to obtain the Fourier transform,

$$
F(\mu)=\int_{-\infty}^{\infty} f(x) e^{i \mu x} d x, \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\mu) e^{-i \mu x} d \mu
$$

9. Let \mathcal{H} be a complex (separable) Hilbert space, with $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ being the inner product and norm.
(a) Let $\lambda \in \mathbb{C}$ be fixed. If $K: \mathcal{H} \rightarrow \mathcal{H}$ is a compact linear operator, show that the range of the operator $L=I-\lambda K$ is closed.
(b) Briefly explain why the operator $K u(x)=\int_{0}^{\pi} \sin (x-t) u(t) d t$ is compact on $L^{2}[0, \pi]$.
(c) Determine the values of λ for which $u=f+\lambda K u$ has a solution for all $f \in \mathcal{H}$, given that K is the operator in 9 b .
