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Part 1: Applied Analysis

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work

clearly. Please indicate which of the 4 problems you are skipping.

(1) Given w ∈ C[0, 1], with w(x) > 0 on [0, 1], let L2
w[0, 1] be the weighted Hilbert space

with the inner product

〈f, g〉w =

∫ 1

0

f(x)g(x)w(x)dx,

where f , g are in L2[0, 1]. In addition, let {φn(x)}∞n=0 be the set of orthogonal poly-
nomials generated by using the Gram-Schmidt process on {1, x, x2 . . .} in the inner
product for L2

w. Assume that φn(x) = xn + lower powers.
(a) State the Weierstrass Approximation Theorem and briefly sketch its proof. (Use

no more than a page or so.)
(b) You are given that C[0, 1] is dense in L2[0, 1]. Show that the orthogonal polyno-

mials {φn(x)}∞n=0 form a complete, orthogonal set in L2
w[0, 1].

(2) Consider the differential operator Lu(x) = −((x + 1)u′)′, with x ∈ [0, 1].
(a) Show that if D(L) := {u ∈ L2 |Lu ∈ L2 and u(0) = 0 = u′(1)}, then L is self

adjoint and positive definite.
(b) Find the Green’s function for L having the domain D(L) above.
(c) Briefly explain why the eigenfunctions this operator are complete in L2[0, 1].

(3) In the problem below, use the Fourier transform conventions

F [f ](ω) =
1√
2π

∫ ∞

−∞

f(x)e−iωxdx

F−1[f̂ ](x) =
1√
2π

∫ ∞

−∞

f̂(ω)eiωxdω.

As usual, f̂ = F [f ].
(a) Show F4 = I. (Hint: F [f(x)] = F−1[f(−x)].)
(b) You are given that the equation −u′′

n + x2un = (2n + 1)un has, up to a constant
multiple, a unique solution un ∈ L2(R), for n = 0, 1, . . .. (You may assume
that the solution is smooth enough and decays fast enough to be in Schwartz
space.) Show that un is an eigenfunction of the Fourier transform; that is, ûn(ω) =
λnun(ω). Also, show that λ4

n = 1.

(4) Let k(x, y) = x4y12 and consider the operator Ku(x) =
∫ 1

0
k(x, y)u(y)dy.

(a) Show that K is a Hilbert-Schmidt operator and that ‖K‖op ≤ 1
10

.
(b) State the Fredholm Alternative for the operator L = I − λK. Explain why it

applies in this case. Find all values of λ such that Lu = f has a unique solution
for all f ∈ L2[0, 1].

(c) Use a Neumann series to find the resolvent (I−λK)−1 for λ small. Sum the series
to find the resolvent.
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Part 2: Numerical Analysis

Instructions: Do all problems in this part of the exam. Show all of your work clearly.

Problem 1: Consider the following two-points boundary value second order problem in
1-D: Find a function u defined a.e. in ]0, 1[ such that

−
(

xK(x)u′(x)
)′

+ xq(x)u(x) = xf(x) a.e. in ]0, 1[ ,

lim
x→0

(

xu′(x)
)

= 0 and K(1)u′(1) + u(1) = 0 ,
(1)

where K ∈ C1([0, 1]), q ∈ C0([0, 1]) and f ∈ L2(0, 1) are given functions. Assume that there
exists a constant κ0 > 0 such that K(x) ≥ κ0 and q(x) ≥ 0 for all x ∈ [0, 1]. Let

V = {v ∈ L2
loc(0, 1) ;

√
xv ∈ L2(0, 1),

√
xv′ ∈ L2(0, 1)} .

Accept as a fact that V is a Hilbert space for the norm

‖v‖V =
(

‖
√

xv‖2
L2(0,1) + ‖

√
xv′‖2

L2(0,1)

)1/2

,

and C1([0, 1]) is dense in V for this norm.

(1) Derive the variational formulation (also called weak formulation) of problem (1) in the
space V .

(2) Prove that the corresponding bilinear form of this variational formulation is elliptic
(or coercive) in V .
Hint. First show that all functions v of C1([0, 1]) satisfy

∫ 1

0

v(x)2dx = v2(1) − 2

∫ 1

0

xv(x)v′(x)dx

and then establish the following variant of Poincaré’s inequality

∀v ∈ V , ‖
√

xv‖L2(0,1) ≤ α
(

v2(1) + ‖
√

xv′‖2
L2(0,1)

)
1

2

for some constant α > 0. Based on this equality deduct the ellipticity.
(3) Choose an integer N ≥ 2, set h = 1/N , let xi = ih, 0 ≤ i ≤ N and define the finite

element space

Vh = {vh ∈ C0([0, 1]) ; vh|]xi,xi+1[ ∈ P1, 0 ≤ i ≤ N − 1} .

Show that Vh is a subspace of V . Discretize the variational problem in this space.
Prove existence and uniqueness of the discrete solution and establish an error estimate
without estimating the norms of the interpolation errors.

Problem 2: Let Ω be a bounded domain in IR2 with polygonal boundary ∂Ω. Let

H1
0 (Ω) = {v ∈ H1(Ω) : v(x) = 0∀x ∈ ∂Ω}

be the standard Sobolev space of functions defined on Ω that vanish on the boundary.
In all that follows, T > 0 is a given final time, c > 0 is a constant, and u0 ∈ C0(Ω) are

given functions. Consider the parabolic equation: Find a function u defined a.e. in Ω×]0, T [
solution of

∂u

∂t
− ∂2u

∂x2
1

− ∂2u

∂x2
2

+ cu = 0 a.e. in Ω×]0, T [ ,

u(x, t) = 0 a.e. in ∂Ω×]0, T [ ,

u(x, 0) = u0(x) a.e. in Ω .

(2)
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Accept as a fact that problem (2) has one and only one solution u in L∞(0, T ; L2(Ω)) ∩
L2(0, T ; H1

0 (Ω)).
Let Th be a finite element partition of Ω into triangles τ of diameter hτ ≤ h. Further, let

Wh = {vh ∈ C0(Ω̄) ; ∀τ ∈ Th, vh|τ ∈ P1, vh|∂Ω = 0} ,

be a finite element space of continuous piece-wise linear functions over Th.
Consider the fully discrete backward Euler implicit approximation of (2): for K a positive

integer, set k = T/K, define tn = nk, 0 ≤ n ≤ K, and for each 0 ≤ n ≤ K − 1, knowing
un

h ∈ Wh find un+1
h ∈ Wh such that

∀vh ∈ Wh ,
1

k

(

un+1
h − un

h, vh

)

+ a(un+1
h , vh) = 0, n = 0, 1, · · · , K, u0

h = Ih(u0).(3)

Here (·, ·) is the inner product in L2(Ω), the bilinear form a(un+1
h , vh) comes from the varia-

tional formulation of problem (2), and Ih is the Lagrange interpolation operator in Wh. Write
the expression of a(un+1

h , vh).

(1) Show that (3) defines a unique function un+1
h in Wh.

(2) Prove the following stability estimate

sup
1≤n≤K

‖un
h‖2

L2(Ω) + k
K

∑

n=1

|un
h|2H1(Ω) ≤ ‖u0

h‖2
L2(Ω).(4)

(3) Also prove the estimate

sup
1≤n≤K

|un
h|H1(Ω) ≤ |u0

h|H1(Ω).(5)

Problem 3: Consider the interval (0, 1) and the set of continuous functions v̂ defined on
[0, 1]. Let â1 = 0, â2 = 1

2
, â3 = 1.

(1) Consider the following two sets of degrees of freedom

Σ1 = {v̂(âj), j = 1, 2, 3} Σ2 = {v̂(â1), v̂(â3),

∫ 1

0

v̂(s)ds}.

Write down the basis functions of P2 (for both sets of degrees of feedom) such that
(a) pi ∈ P2, 1 ≤ i ≤ 3, satisfying: pi(âj) = δi,j, 1 ≤ i, j ≤ 3 for the set Σ1;
(b) qi ∈ P2, 1 ≤ i ≤ 3, satisfying:

qi(âj) =δi,j,

∫ 1

0

qi(s)ds = 0, i = 1, 3, j = 1, 3,

∫ 1

0

q2(s)ds = 1, q2(â1) = q2(â3) = 0, for the set Σ2.

In both cases, write down the FE interpolant Π̂(ŵ) of a given function ŵ ∈ C0([0, 1]).
(2) Consider the interval [a, b], let F map [0, 1] onto [a, b], and let v be given in H3(a, b).

Define Π(v) by
(

Π(v)
)

◦ F = Π̂
(

v ◦ F
)

. Give the Bramble Hilbert argument to get an
estimate in terms of h = b − a for the error

‖v′ − Π(v)′‖L2(a,b) .

Explain how to modify the proof when v is less regular, e.g v ∈ H2(a, b).
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