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STABILITY ANALYSIS OF EXPLICIT ENTROPY VISCOSITY

METHODS FOR NON-LINEAR SCALAR

CONSERVATION EQUATIONS

ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

Abstract. We establish the L2-stability of an entropy viscosity technique
applied to nonlinear scalar conservation equations. First- and second-order
explicit time-stepping techniques using continuous finite elements in space are
considered. The method is shown to be stable independently of the polynomial
degree of the space approximation under the standard CFL condition.

1. Introduction

Owing to a classical theorem by Godunov, it is now well understood that non-
linear approximation is required to approximate solutions of first-order hyperbolic
equations with higher-order accuracy (i.e., larger than first-order). One can roughly
distinguish two categories of nonlinear methods; the first one uses limiters and
nonoscillatory reconstructions; see for example [12–14,20] and the second one uses
nonlinear viscosities [4, 15, 18, 22, 24]. (This categorization is fuzzy as observed in
Remark 4.1 of [4].) The purpose of this paper is to analyze the stability properties
of a method of the second category which we call entropy viscosity. This method
has been introduced in [9, 11] and is based on a research program exposed in [8].

The entropy viscosity technique is a new class of high-order numerical methods
for approximating conservation equations. This approach does not use any flux
or slope limiters, applies to equations or systems supplemented with one or more
entropy inequalities and is easy to implement on a large variety of meshes and poly-
nomial approximations. The use of limiters and nonoscillatory reconstructions is
avoided by adding a degenerate nonlinear dissipation to the numerical discretization
of the equation or system at hand. The numerical viscosity is set to be proportional
to the local size of an entropy production. Scalar conservation equations have many
entropy pairs and most physical systems have at least one entropy function satisfy-
ing an auxiliary entropy inequality. The entropy satisfies a conservation equation in
the regions where the solution is smooth and satisfies an inequality in shocks; this
inequality then becomes a selection principle for the physically relevant solution.
The amount of violation of the entropy equation is called entropy production. By
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making the numerical diffusion proportional to the entropy production, the numer-
ical dissipation becomes large in the regions of shock and small in the regions where
the solution remains smooth.

The method has been implemented with Fourier approximation in [9], with spec-
tral finite elements in [10], with continuous finite elements in [11], with discontin-
uous finite elements in [26] and various entropy functionals. The method seems to
perform well on various benchmarks for a large class of approximation techniques
but no theoretical result has yet been produced so far to justify the performance of
the method. The present paper is our very first attempt in this direction.

The convergence analysis of nonlinear schemes for conservation equations is com-
plicated even for the one-dimensional linear transport equation. For instance, it
was only recently that the convergence rate of the second-order Nessyahu-Tadmor
scheme [20] was shown to be better than that of a first-order monotone scheme for
the linear transport equation in one space dimension [21]. In the present paper
we restrict ourselves to the L2-stability of the entropy viscosity method applied to
scalar nonlinear conservation equations with various explicit time-stepping tech-
niques using continuous finite elements in space of any degree.

The paper is organized as follows. The problem and the discrete setting at hand
are described in §2. The stability of the first-order forward Euler method using
a formally second-order viscosity based on the quadratic entropy E(u) = 1

2u
2 is

investigated in §3. Two second-order Runge-Kutta (RK2) time stepping techniques
are analyzed in §4 and §5. In §4 we focus on the Heun method which is an example
of a strong-stability preserving scheme (SSP). Stability is obtained upon adding
an entropy viscosity at each step of this two-step method. The viscosity used in
the first step depends on the solution from the previous time interval. We prove
L2-stability using the linear entropy E(u) = u, i.e., the entropy equation is the
residual of the conservation equation. In §5 we analyze the midpoint scheme using
again the linear entropy E(u) = u to construct the viscosity. The particularity
of this two-step method is that the entropy viscosity is built on the fly; i.e., it is
added only at the second step and uses the solution from the first step. This feature
could be useful when adaptive refinement is performed. Concluding remarks and
numerical illustrations are reported in §6. The three key results from this paper
are Theorem 3.1, Theorem 4.1 and Theorem 5.1.

2. Preliminaries

We describe in this section the functional setting used in this paper and we
establish preliminary results.

2.1. The scalar conservation equation. Let Ω ⊂ R
d, d ≥ 1, be an open con-

nected domain with Lipschitz boundary. The outward unit normal of Ω is denoted
by n. We consider the scalar-valued conservation equation

(2.1) ∂tu + ∇·f(u) = 0, u(x, 0) = u0(x), (x, t) ∈ Ω×R+,

where f ∈ C1(R;Rd). The uniform Lipschitz condition on the flux might seem to
be restrictive. For instance, to be useful this condition requires uniform a priori
bounds on the discrete solution when f(v) = 1

2v
2. However, since the solution u of

(2.1) satisfies such uniform bounds, say

m := ess inf
y∈Ω

u0(y) ≤ u(x, t) ≤ ess sup
y∈Ω

u0(y) =: M, ∀(x, t) ∈ Ω×(0, T ),(2.2)
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a standard way to bypass the uniformly Lipschitz condition at the discrete level

consists of replacing f by f̃ so that f̃(v) = f(v) for all v ∈ [m,M ] and f̃ ′(v) = f ′(m)

when v ∈ (−∞,m] and f̃ ′(v) = f ′(M) when v ∈ [M,∞).
To avoid boundary condition issues that can be very difficult to handle, we

assume that there exists some time T > 0 so that

(2.3)

∫
Ω

u(x, t)∇·f(u(x, t)) dx ≥ 0, ∀t ∈ [0, T ).

Note that provided f ∈ C1(R;Rd), (2.3) is just the requirement that
∫
Ω
∇·G(u) dx ≥

0 where G(u) :=
∫ u

0
vf ′(v) dv is the entropy flux associated with the entropy E(u) =

1
2u

2 (see below). This condition holds with T = +∞ if the boundary conditions
are periodic. It also holds if the initial data is compactly supported, and in this
case T is the time at which the domain of dependence of u0 reaches the boundary
of Ω. Dealing with the general case can be done by enforcing entropy compatible
boundary conditions à la Bardos, Leroux, and Nédélec [1], instead of condition
(2.3). We choose not to take this path to avoid additional technicalities.

It is known that the scalar-valued Cauchy problem (2.1) may have infinitely
many weak solutions, but only one of them is physical and satisfies the additional
inequalities

(2.4) ∂tE(u) + ∇·F(u) ≤ 0,

for all strictly convex functions E ∈ C1(R;R), where F(u) :=
∫
E′(v)f ′(v) dv; see

[19]. This physical solution is henceforth called the entropy solution. The function
E(u) is called entropy and F(u) is the associated entropy flux. The most well-
known entropy pairs are the Kružkov pairs generated by {E(u) = |u− c|, c ∈ R}. It
is also known for strictly convex fluxes in one space dimension that if the entropy
inequality (2.4) holds for one entropy pair and one weak solution u (provided the
entropy E is strictly convex), then it also holds for all possible pairs and u is the
unique entropy solution.

The objective of this paper is to perform the L2-stability analysis of the entropy
viscosity method applied to the nonlinear conservation equation (2.1) with forward
Euler time stepping and with RK2 time stepping using continuous finite elements
in space.

2.2. Functional spaces. We call a mesh T a subdivision of Ω into disjoint and
closed elements K such that Ω =

⋃
K∈T K; Ω is the closure of Ω. The mesh is

assumed to be affine to avoid unnecessary technicalities, i.e., Ω is assumed to be a
polygon in two space dimensions or a polyhedron in three space dimensions. For any
K ∈ T , we denote by hK = diam(K) the diameter of K and by ρK the diameter of
the largest ball inscribed in K. Also, we denote hT : Ω → R the meshsize function
defined by

hT |K := hK , K ∈ T .

The subscript T is omitted when no confusion is possible. We suppose that we have
at hand a family of meshes {Ti}∞i=1 and that this family is shape-regular, meaning
that the quantity

(2.5) cs := sup
i≥1

max
K∈Ti

hK/ρK

is finite, i.e., the elements are not too flat. For all K ∈ Ti, the collection of elements
in Ti that touch K is denoted ΔK . We assume also that the mesh family is locally
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quasi-uniform in the sense that the quantity

(2.6) cu := sup
i≥1

max
K∈Ti

Å
hK/( min

K′∈ΔK

hK′)

ã

is finite, i.e., all the elements that touch K have diameters of order hK .
Given a mesh T , we define V(T ) the space of piecewise polynomials by

(2.7) V(T ) :=
{
V ∈ C0(Ω) : V |K ∈ P(K), ∀K ∈ T

}
,

where the local finite-dimensional space P(K) is assumed to contain the multivari-
ate polynomials of total degree at most k ≥ 1 over K, where k is a fixed integer.
As a general rule, we will use capital letters to denote discrete functions. Finally,
the L2-scalar product over a domain S ⊂ T is denoted by (·, ·)S , and we abuse the
notation by using (·, ·)Ω instead of (·, ·)T . We often use the shorter notation ‖ · ‖L2

for ‖ · ‖L2(Ω) whenever it is unambiguous to do so.

We denote Π0
T the L2-projection onto constants, i.e., Π0

T ϕ|K := 1
|K|

∫
K
ϕ for

K ∈ T , and ΠT the L2-projection onto V(T ). We will frequently use the following
inverse inequality

h
− 1

2

K ‖V ‖L2(∂K) + ‖∇V ‖L2(K) ≤ cih
−1
K ‖V ‖L2(K), ∀V ∈ V(T ), ∀K ∈ T ,(2.8)

‖V ‖L∞(K) ≤ c∞|K|− 1
2 ‖V ‖L2(K), ∀V ∈ V(T ), ∀K ∈ T ,(2.9)

and approximation estimate

‖v − Π0
T v‖L2(Ω) ≤ c0‖hT ∇v‖L2(Ω), ∀v ∈ H1(Ω).(2.10)

The above constants ci, c∞, c0 solely depend on the polynomial degree k, the
domain Ω and the mesh shape regularity constant cu and cs defined in (2.5)-(2.6).
In the rest of this manuscript, c, c′, c′′ denote generic constants that may depend
solely on the above constants if not stated otherwise. In order to simplify the
presentation, we shall explicitly mention the specific constants only after the step
invoking the corresponding estimate. When confusion is not possible, we omit the
dependency in T using the abbreviation Π := ΠT , Π0 := Π0

T and h := hT .

For any subset S ⊂ T we define the two sets S and Ṡ as

S :=
⋃
K∈S

ΔK = {K ′ ∈ T : ∃K ∈ S, K ′ ∩K = ∅},(2.11)

Ṡ := T \(T \S).(2.12)

The set S is composed of S plus the layer of elements surrounding S (not to be

confused with the closure of S). The set Ṡ is the complement in T of Sc, where
Sc := T \S (not to be confused with the interior of S).

For all subsets S ⊂ T , we define the restriction operator RS : V(T ) −→ V(T )
as follows. Let {ψ1, . . . , ψM} be the global shape functions spanning V(T ). Let I
be the set of indices, i, so that the support of ψi has a nonempty intersection with
Ṡ for all i ∈ I. Then for all V :=

∑M
i=1 Viψi ∈ V(T ), we set RSV =

∑
i∈I Viψi.

This definition implies that

(2.13) RSV ∈ V(T ), and RSV (x) :=

®
0 if x ∈ Sc := T \S,
V (x) if x ∈ Ṡ.
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Lemma 2.1. There is a uniform constant cR depending on c∞ and the polynomial
degree k so that the following holds:

(2.14) ‖RSV ‖L2(S\Ṡ) ≤ cR ‖V ‖L2(S\Ṡ), ∀V ∈ V(T ), ∀S ⊂ T .

Proof. Let K ∈ S\Ṡ. Using (2.9) and the definition of RT V we infer that

‖RSV ‖L2(K) ≤ |K|1/2‖RSV ‖L∞(K) ≤ c |K|1/2‖V ‖L∞(K) ≤ c c∞‖V ‖L2(K).

The desired result follows readily. �

3. Forward Euler stability

We approximate in time the nonlinear conservation equation (2.1) using the
first-order forward Euler method and we establish the L2-stability of the method.

3.1. The algorithm. Let T be a mesh and let U0 ∈ V(T ) be an approximation
of u0. Let us set δt−1 = +∞ and t0 = 0. The forward Euler discretization of the
equation (2.1) is constructed as follows. Let Un ∈ V(T ) be the approximation of u
at time tn, n ≥ 0. To avoid boundary condition issues we assume that the following
conservation property holds

(3.1) (∇·f(Un), Un)Ω ≥ 0.

As mentioned in §2.1, this property is known to hold if u0 is compactly supported
and tn is small; it also holds if the boundary conditions are periodic.

Let cτ ≥ 1 be a number and let λ > 0 be another positive number that we
henceforth call the CFL number; we select the time step δtn so that

(3.2) δtn ≤ min(λ min
K∈T

hK

‖f ′(Un)‖L∞(K)
, cτδtn−1).

Note that the quantity minK∈T
hK

‖f ′(Un)‖L∞(K)
≥ 1

‖f ′‖
L∞(R;Rd)

minK∈T hK is bounded

away from zero since f is assumed to be uniformly Lipschitz; as a result, it is always
possible to select δtn > 0 satisfying (3.2) and to advance in time. The condition
δtn ≤ cτδtn−1 ensures the time stepping is quasi-uniform. Let tn+1 = tn + δtn and
let Un+1 ∈ V(T ) be such that

(3.3)
(
Un+1 − Un + δtn∇·f(Un), V

)
Ω

+ δtn (νn∇Un,∇V )Ω = 0, ∀V ∈ V(T ),

where νn is the entropy viscosity that we now define. Three different residuals are
used to construct the entropy viscosity νn. We define the residual of the equation
Rn,

(3.4) Rn :=
Un − Un−1

δtn−1
+ ∇·f(Un),

and we define two entropy residuals Rn
E1, R

n
E2,

(3.5) Rn
E1 := Rn Un, and Rn

E2 :=
E(Un) − E(Un−1)

δtn−1
+ f ′(Un)·∇E(Un).

where E(v) = 1
2v

2 is the quadratic entropy. Let Rn
E be the total entropy residual

defined as follows:

(3.6) Rn
E |K := ‖Rn

E1‖L∞(K) + ‖Rn
E2‖L∞(K) + δtn‖Rn‖2L∞(K).

We then define the entropy viscosity over each cell K as follows:

(3.7) νn|K := hK min(cM‖f ′(Un)‖L∞(K), cER
n
E |K),
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1044 ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

where cM > 0 and cE > 0 are user-defined constants.

Remark 3.1 (Choice of Parameters). Usually we take cM = 1
2k in one space dimen-

sion and cM = 1
4k in two space dimensions (recall that k is the polynomial degree

used in the local approximation space P). The constant cE is dimensional and is
also user-defined; for instance, it can be defined as follows:

(3.8) cE := cE
D

1
|Ω|

∫
Ω
|E(U0)|

or, equivalently, cE := cE |Ω|‖∇E(U0)‖−1
L1(Ω), or cE := cED‖E(U0)‖−1

L∞(Ω), where

|Ω| := meas(Ω), D := diam(Ω) and cE is a nondimensional constant of order one.

Remark 3.2 (Consistency of the entropy residual). Note that RE is formally first-
order, O(δtn +hk

K), in the region where u is smooth. That is, the entropic viscosity
is formally second-order, i.e., O(hK(δtn + hk

K)), which is greater than the overall
consistency order of the first-order Euler method. As a result, we expect the method
to be as accurate as the first-order Euler method for smooth solutions, i.e., the error
should be formally O(δt + hk) in Lp-norms, 1 ≤ p < ∞, provided some stability is
established.

The entropic viscosity naturally splits the mesh T into a viscous and a smooth
set as follows:

(3.9) T = T n
V ∪ T n

S ,

®
T n
V :=

{
K ∈ T : νn|K = cMhK‖f ′(Un)‖L∞(K)

}
,

T n
S := T \T n

V := {K ∈ T : νn|K = cEhKRE |K} .
This decomposition will arise in the stability analysis below. For the moment, note
that no stability issue should arise on T n

V due to the presence of the first-order
viscosity νn|K = cMhK‖f ′(U)‖L∞(K), ∀K ∈ T n

V . Establishing stability on T n
S will

turn out to be the more technical part of the proof; it will be essential to observe
that the discrete time derivative satisfies

(3.10)

Å
Un − Un−1

δtn

ã2

= 2
Rn

E1 −Rn
E2

δtn
≤ 2

|Rn
E1| + |Rn

E2|
δtn

,

which justifies the introduction on the two entropy residuals Rn
E1 and Rn

E2.

3.2. Stability analysis of forward Euler. We are now in position to prove the
stability estimate for the forward Euler scheme (3.3).

Theorem 3.1 (Stability of the Forward-Euler Scheme). Assume that the conditions
(3.1)-(3.2) are satisfied. There is Λ0 > 0 that depends only on the user-defined
parameters cM , cE, the Lipschitz constant of the flux, and on the mesh family
constants c0, ci, and there is a constant c that additionally depends linearly on the
final time T so that the solution to (3.3) satisfies the following L2-stability estimate
for all λ ≤ Λ0:

(3.11) ‖Un‖2L2(Ω) +
n∑

i=0

‖
√
νi∇U i‖2L2(Ω) ≤ ‖U0‖2L2(Ω)(1 + c λ), ∀tn ≤ T.

Proof. Step 1. Using V = 2Un in (3.3) together with the conservation property
(3.1), we obtain

(3.12) ‖Un+1‖2L2(Ω) − ‖Un‖2L2(Ω) + 2δtn‖
√
νn∇Un‖2L2(Ω) ≤ ‖Un+1 − Un‖2L2(Ω).
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We now estimate the right-hand side of (3.12). Defining B := {V ∈ V(T ) | ‖V ‖L2(Ω)

= 1}, and using νn|K ≤ cM‖f ′(Un)‖L∞(K)hK , (3.3) yields

‖Un+1 − Un‖2L2(Ω) = sup
V ∈B

(
Un+1 − Un, V

)2
Ω

≤ 2δt2n sup
v∈B

Ä
(∇·f(Un), V )

2
Ω + (νn∇U,∇V )

2
Ω

ä
≤ 2δt2n‖∇·f(Un)‖2L2(Ω) + 2δtncMc2iλ‖

√
νn∇Un‖2L2(Ω).

Therefore we can rewrite (3.12) as follows:

(3.13) ‖Un+1‖2L2(Ω) − ‖Un‖2L2(Ω) + 2δtn(1 − cMc2iλ)‖
√
νn∇Un‖2L2(Ω)

≤ 2δt2n‖∇·f(Un)‖2L2(Ω).

The remainder of the proof consists of estimating a bound on ‖∇·f(Un)‖2L2(Ω), and

we are going to invoke the partition T = T n
V ∪ T n

S for that purpose.

Step 2 (Control over T n
V ). The viscosity is large enough to control δtn‖∇·f(Un)‖L2(Ω)

on the viscous set T n
V , and we have:

(3.14) δt2n

∫
T n
V

|∇·f(Un)|2 ≤ ‖h−1f ′(Un)‖L∞(Ω)δt
2
nc

−1
M

∫
T n
V

νn|∇Un|2

≤ c−1
M δtnλ‖

√
νn∇Un‖2L2(Ω).

Step 3 (Control over T n
S ). Recalling the bound (3.10), we infer that

δtn−1|∇·f(Un)| = |δtn−1R
n − (Un − Un−1)|

≤ δtn−1|Rn| +
√

2δt
1
2
n−1(|Rn

E1|
1
2 + |Rn

E2|
1
2 ).

With this estimate in hand we infer that the following estimate holds on the smooth
set T n

S ,

δt2n

∫
T n
S

|∇·f(Un)|2

≤ δt
3
2
n

∫
T n
S

|∇Un||f ′(Un)|
(
δt

1
2
n |Rn| +

√
2δt

1
2
n δt

− 1
2

n−1(|Rn
E1|

1
2 + |Rn

E2|
1
2 )
)

≤ cδt
3
2
n

∫
T n
S

|∇Un||f ′(Un)| (Rn
E)1/2,

where we have used the quasi-uniformity assumption (3.2) of the time stepping.
Hence, we obtain

δt2n‖∇·f(Un)‖2L(T n
S
) ≤ cc−1

E λδtn|T n
S |‖f ′(Un)‖L∞(Ω)

+
1

2
δt2nλ

−1cE

∫
T n
S

|∇Un|2|f ′(Un)|Rn
E ,

which after using that f is uniformly Lipschitz together with the expression of the
viscosity νnK = cEhKRn

E on T n
S , leads to

δt2n‖∇·f(Un)‖2L2(T n
S
) ≤ cλgEδtn‖U0‖2L2(Ω) +

1

2
δtn‖

√
νn∇Un‖2L2(Ω),(3.15)

where we set gE := ‖f ′‖L∞(R)|Ω|c−1
E ‖U0‖−2

L2(Ω).
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1046 ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

Step 4. Setting Λ0 := cM
4(c2

M
c2
i
+1)

and inserting (3.14) and (3.15) into (3.13), we

finally obtain that the following holds for all λ ≤ Λ0,

‖Un+1‖2L2(Ω) − ‖Un‖2L2(Ω) + δtn‖
√
νn∇Un‖2L2(Ω) ≤ c λgEδtn,

which immediately leads to

‖Un‖2L2(Ω) +
n∑

i=0

‖
√
νi∇U i‖2L2(Ω) ≤ ‖U0‖2L2(Ω)(1 + c λgEtn), ∀n ∈ N .

Observe that λgEtn is a dimensionless constant. This completes the proof. �

4. Runge-Kutta 2 (Heun)

We now turn our attention to the second-order RK2/Heun time discretization to
approximate (2.1). This time stepping is known to be a Strong-Stability-Preserving
method [7]. The viscosity considered in this section is mainly based on the the
linear entropy E(u), i.e., the residual of the equation at the previous time step. We
analyze another second-order method with the viscosity computed on the fly in §5.
The present scheme and that in §5 do not require the quasi-uniformity assumption
that had to be invoked for the forward Euler scheme; see (3.2).

4.1. The algorithm. Let us set t0 = 0 and let U0 ∈ V(T ) be an approximation of
u0. Let λ > 0 be a CFL number. Let Un ∈ V(T ) be the approximation of u at time
tn, n ≥ 0. Let δtn be a given time step possibly restricted later by the CFL number
(see (4.4)) and set tn+1 = tn + δtn. The fully discrete RK2/Heun algorithm that
we consider is formulated as follows: Find Wn ∈ V(T ) and Un+1 ∈ V(T ) satisfying

(Wn, V )Ω − (Un, V )Ω + δtn (∇·f(Un), V )Ω + δtn (νn1∇Un,∇V )Ω = 0,(4.1) (
Un+1 − 1

2 (Wn + Un), V
)
Ω

+
δtn
2

(∇·f(Wn), V )Ω +
δtn
2

(νn2∇Wn,∇V )Ω = 0,(4.2)

for all V ∈ V(T ), where the viscosities νn1 , νn2 are defined below. To avoid issues
induced by the boundary condition we assume that both Un and Wn satisfy the
following conservation properties:

(4.3) (∇·f(Un), Un)Ω ≥ 0, (∇·f(Wn),Wn)Ω ≥ 0.

We refer to §2.1 for a discussion on the validity of this assumption. We assume
that δtn satisfies the additional condition

(4.4) δtn ≤ λ min
K∈T

hK

max(‖f ′(Un)‖L∞(K), ‖f ′(Wn)‖L∞(K))
.

If this condition is not satisfied at the end of the time step, the computation
of Wn and Un+1 is redone with a smaller time step, say δtn is divided by 1.5.
Note that due to the uniform Lipschitz assumption on f , picking δtn smaller than

1
‖f ′‖L∞(R)

minK∈T hK always guarantees that (4.4) holds.

Let us now construct the viscosities νn1 , νn2 . Let U−1 = U0, and consider the
residual Rn, n ≥ 0, defined by

(4.5) Rn :=
Un − Un−1

δtn−1
+ ∇·f(Un).
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Let cM > 0, cE > 0, α ≥ 0 be three real numbers and let us consider the partition
of T defined at time step tn as follows:
(4.6)

T = T n
V ∪ T n

S ,

®
T n
S :=

{
K ∈ T : cEh

α
K‖Rn‖L∞(K) ≤ cM‖f ′(Un)‖L∞(K)

}
,

T n
V := Th\T n

S .

We now define the viscosities νn1 , νn2 , n ≥ 0, to be piecewise constant functions on
the mesh cells. For any K ∈ T we set ν01 |K = cMhK‖f ′(U0)‖L∞(K) and for n ≥ 1,
(4.7)

νn1 |K :=

®
cMhK‖f ′(Un)‖L∞(K) if K ∈ T n

V ,

hK max
(
cEh

α
K‖Rn‖L∞(K), cMoscK(f , Un)

)
if K ∈ ˙T n

S := T \T n
V ,

where

(4.8) oscK(f , Un) :=
‖∇·f(Un) − Π0(∇·f(Un))‖2L∞(K)

4‖f ′(Un)‖L∞(K)‖∇Un‖2L∞(K)

.

Note that oscK(f , Un) ≤ ‖f ′(Un)‖L∞(K). The second sub-step viscosity νn2 is de-
fined as follows for all n ≥ 0:

νn2 |K := cMhKnlK(f ,Wn, Un),(4.9)

nlK(f ,Wn, Un) :=
1

2

‖f ′(Wn) − f ′(Un)‖2L∞(K)

‖|f ′(Wn)| + |f ′(Un)|‖L∞(K)
.(4.10)

Several comments are in order regarding the definition of the viscosities.

Remark 4.1 (Oscillation of ∇·f(Un)). The oscillation of ∇·f(Un), denoted
oscK(f , Un), and the nonlinear variation of f , denoted nlK(f ,Wn, Un), are both
zero for the linear transport equation, f(u) := βu, β ∈ R

d. The purpose of these
two terms is to help control the nonlinearity of the flux. To the best of our knowl-
edge, stability under the usual CFL condition of the Heun discretization of the
linear transport equation with continuous finite elements is known so far only for
the piecewise linear approximation [5]. This issue with the piecewise linear approxi-
mation does not seem to arise for higher-order time stepping [5,25]. The oscillation
term oscK(f , Un) in the definition of νn1 seems to be necessary to handle finite
elements of polynomial degrees larger than one.

Remark 4.2 (Alternative Expression of νn1 ). The viscosity νn1 can be rewritten in
the alternative form

νn1 |K := hK min
(
cM‖f ′(Un)‖L∞(K),max(cEh

α
K‖Rn‖L∞(K), cMoscK(f , Un))

)
,

for all K ∈ T n
V ∪ ˙T n

S , n ≥ 1, and νn1 |K := cMhK‖f ′(Un)‖L∞(K), for K ∈ Ln,

where we have defined Ln := T n
S \ Ṫ n

S . The viscosity saturates to first-order in

the so-called viscous set T n
V ∪ Ln and is small in the so-called smooth set ˙T n

S ; see
Figure 1.

Remark 4.3 (Consistency of viscosities). Note that the terms cMhKoscK(f , Un)
and cMhK |Rn| are formally O(h3

K) and O(h1+α
K (δtn + hk

K)), respectively. This

mean that the viscosity ν1|K is O(h2+α
K ) under the CFL condition. The viscosity

ν2|K = cMhKnlK(f ,Wn, Un) is formally O(δt2nhK), i.e., it is third-order in the

smooth region ˙T n
S . Overall the consistency order of the artificial viscosities is higher
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Ln

˙T n
S

T n
V T n

S

Figure 1. Schematic representation of the partition T = ˙T n
S ∪

Ln ∪ T n
V .

than the overall O(δt2n) consistency of the Heun method under the CFL condition.
The accuracy order of the method is expected to be at least O(δt2 + hmin(2+α,k)).

Remark 4.4 (Constants cM and cE). The constant cM is user-defined, nondimen-
sional and of order one. The constant cE is also user-defined but dimensional; for
instance, it can be defined as

(4.11) cE := cE
D1−α

|Ω|−1/2‖U0‖L2(Ω)

or cE := cED
1−α‖U0‖−1

L∞ , where D := diam(Ω) and cE is a user-defined non-
dimensional constant of order one; see also Remark 3.1.

4.2. Stability analysis of RK2/Heun. We establish in this section the L2-
stability of the RK2/Heun time discretization of (2.1).

Theorem 4.1 (Stability of the RK2/Heun). There is Λ0 > 0 that depends only on
the user-defined parameters cM , cE, the Lipschitz constant of the flux, and on the
mesh family constants c0, ci, and there is a constant c that additionally depends
linearly on T 2(1−α) so that the solution to (4.1)-(4.2) satisfies the following L2-
stability estimate for all λ ≤ Λ0:

(4.12) ‖Un+1‖2L2(Ω) +
n∑

i=0

δtn

(
‖
»

νi1∇U i‖2L2(Ω) + ‖
»
νi2∇W i‖2L2(Ω)

)

≤ ‖U0‖2L2(Ω)

Ä
1 + cλ2(1+α)(δt/T )1−2α

ä
, ∀tn ≤ T,

where δt := maxi=0,...,n δtn. In particular, (4.1)-(4.2) is stable provided α ≤ 1
2 .
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Proof. Step 1. Choosing V = Un in (4.1), V = 2Wn in (4.2), using the conservation
property (4.3), and adding the two results we obtain that

(4.13) ‖Un+1‖2L2(Ω) − ‖Un‖2L2(Ω) + δtn
Ä
‖
√
νn1∇Un‖2L2(Ω) + ‖

√
νn2∇Wn‖2L2(Ω)

ä
≤ ‖Un+1 −Wn‖2L2(Ω).

The rest of the proof consists of deriving a bound on the time increment ‖Un+1 −
Wn‖2L2(Ω). Note that this time increment is formally second-order as can be ob-

served by constructing (4.2) − 1
2 (4.1):

(4.14)
(
Un+1 −Wn, V

)
Ω

= −δtn
2

(∇·(f(Wn) − f(Un)), V )Ω

− δtn
2

(νn2∇Wn − νn1∇Un,∇V )Ω .

Step 2. We set Zn := Wn − Un and test (4.14) with V = Un+1 −Wn. The first
term in the right-hand side is handled as follows:

−δtn
2

(∇·(f(Wn) − f(Un)), V )Ω = −δtn
2

((f ′(Wn) − f ′(Un))·∇Wn, V )Ω

− δtn
2

(f ′(Un)·∇(Wn − Un), V )Ω

≤ c
− 1

2

M δt
1
2
nλ

1
2 ‖

√
νn2∇Wn‖L2(Ω)‖V ‖L2(Ω) +

1

2
λ‖h∇Zn‖L2(Ω)‖V ‖L2(Ω),

where we used the definition of νn2 to deduce that

‖f ′(Wn) − f ′(Un)‖2L∞(K) ≤ 4νn2 |Kh−1
K c−1

M max(‖f ′(Un)‖L∞(K), ‖f ′(Wn)‖L∞(K)).

The second term in (4.14) is estimated as follows:

− δtn
2

(νn2∇Wn − νn1∇Un,∇V )Ω

≤ ci
2
δt

1
2
nλ

1
2 c

1
2

M

Ä
‖
√
νn2∇Wn‖L2 + ‖

√
νn1∇Un‖L2

ä
‖V ‖L2 .

Combining the above estimates gives

(4.15) ‖Un+1 −Wn‖2L2 ≤ λ2‖h∇Zn‖2L2

+ (c2i cM + 4c−1
M )λδtn

Ä
‖
√
νn2∇Wn‖2L2 + ‖

√
νn1∇Un‖2L2

ä
.

The two viscous terms in the right-hand side can be absorbed in the left-hand
side of (4.13) provided Λ0 is small enough. The remaining term ‖h∇Zn‖L2 is
critical. To control this term we borrow an argument from [5] and adapt it to make
it work for any polynomial degree (see Remark 4.5). The argument is based on the
properties

‖h∇Zn‖L2(K) ≤ ci‖Zn − Π0Zn‖L2(K), ∀K ∈ T ,(4.16) ∫
K

Π0(∇·f(Un))(Zn − Π0Zn) dx = 0, ∀K ∈ T ,(4.17)

where Π0 is the L2-projection onto piecewise constants, i.e., Π0v is defined on each
mesh cell by Π0v|K = |K|−1

∫
K
v dx, for all v ∈ L2(Ω). Using inequality (4.16) in
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1050 ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

(4.15) implies that

(4.18) ‖Un+1 −Wn‖2L2 ≤ c2iλ
2‖Zn − Π0Zn‖2L2

+ (c2i cM + 4c−1
M )λδtn

Ä
‖
√
νn2∇Wn‖2L2(Ω) + ‖

√
νn1∇Un‖2L2(Ω)

ä
.

Step 3. We now focus our attention on the first term in the right-hand side of (4.18)
and we denote Xn := Zn − Π0Zn. The defining properties of Π0 and Π imply

(4.19) λ2‖Xn‖2L2 = λ2 (Xn, Zn)Ω = λ2 (ΠXn, Zn)Ω .

Note that from (4.1) we have

(Zn, V )Ω = −δtn (∇·f(Un), V )Ω − δtn (νn1∇Un,∇V )Ω , ∀V ∈ V(T ).

Hence, by choosing the test function V = ΠXn in this equation, we obtain

λ2‖Xn‖2L2 = λ2 (ΠXn, Zn)Ω

= −λ2δtn (∇·f(Un),ΠXn)Ω − δtnλ
2 (νn1∇Un,∇ΠXn)Ω .

The L2-stability of Π and the boundedness of νn1 imply that the last term above
can be bounded as follows:

−δtnλ
2 (νn1∇Un,∇ΠXn)Ω ≤ δtnλ

2‖
√
νn1∇Un‖L2(Ω)‖

√
νn1∇ΠXn‖L2

≤ cic
1
2

Mδt
1
2
nλ

5
2 ‖

√
νn1∇Un‖L2(Ω)‖ΠXn‖L2

≤ cic
1
2

Mδt
1
2
nλ

5
2 ‖

√
νn1∇Un‖L2(Ω)‖Xn‖L2 .

Gathering the above estimates, we can recast (4.19) into

λ2(1 − c2i cM
2

λ2)‖Xn‖2L2 ≤ 1

2
δtnλ‖

√
νn1∇Un‖2L2(Ω) − λ2δtn (∇·f(Un),ΠXn)Ω .

If Λ0 is chosen so that Λ0 ≤ c−1
i c

− 1
2

M , then for all λ ≤ Λ0,

(4.20) λ2‖Xn‖2L2 ≤ δtnλ‖
√
νn1∇Un‖2L2(Ω) − 2λ2δtn (∇·f(Un),ΠXn)Ω .

The last term in the right-hand side of the above expression is the most complicated
to estimate, and this is done by invoking the decomposition T = T n

V ∪ T n
S .

Step 4 (Control over T n
V ). We use the fact that νn1 |K = cMhK‖f ′(Un)‖L∞(K) over

T n
V and the L2-stability of Π to obtain

(4.21)

−2λ2δtn (f ′(Un)·∇Un,ΠXn)T n
V

≤ λδtn‖
√
νn1∇Un‖2L2(Ω) + c−1

M λ4‖Xn‖2L2(Ω).

Step 5 (Control over T n
S ). We handle the term I := −2λ2δtn (∇·f(Un),ΠXn)T n

S
as

follows:

1
2I = −λ2δtn

(
Π0(∇·f(Un)),ΠXn

)
T n
S

− λ2δtn
(
∇·f(Un) − Π0(∇·f(Un)),ΠXn

)
T n
S

.

We now need to control −λ2δtn
(
Π0∇·f(Un),ΠXn

)
T n
S

; the key to the whole proof

is here. Let us first recall that Xn := Zn−Π0Zn and (4.17) holds since Π0∇·f(Un)
is piecewise constant; this property in turn implies that

−λ2δtn
(
Π0∇·f(Un),ΠXn

)
T n
S

= −λ2δtn
(
Π0∇·f(Un),ΠXn −Xn

)
T n
S

.
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It is at this point that we use the fact that we are testing with ΠXn − Xn. In
particular, we are going to use the key property

(RT n
S

(Un − Un−1),ΠXn −Xn)T n
S

= 0,

where the restriction operator RT n
S

is defined in (2.13). The above orthogonality

property allows us to construct a residual Rn := δt−1
n−1(U

n − Un−1) + ∇·f(Un) so
that

1
2I = −λ2δtn

Ä
Π0(∇·f(Un)) + δt−1

n−1RT n
S

(Un − Un−1),ΠXn −Xn
ä
T n
S

− λ2δtn
(
(∇·f(Un) − Π0(∇·f(Un)),ΠXn

)
T n
S

= −λ2δtn (Rn,ΠXn −Xn)Ṫ n
S
−λ2δtn

(
(Π0(∇·f(Un))−∇·f(Un),ΠXn −Xn

)
Ṫ n
S

− λ2δtn
Ä
Π0(∇·f(Un)) + δt−1

n−1RT n
S

(Un − Un−1),ΠXn −Xn
ä
Ln

− λ2δtn
(
(∇·f(Un) − Π0(∇·f(Un)),ΠXn

)
T n
S

,

where Ln is the layer of elements in T n
S that is between Ṫ n

S and T n
V , i.e., Ṫ n

S ∪Ln =
T n
S . We reorganize the above identity as follows:

1
2I = −λ2δtn (Rn,ΠXn −Xn)Ṫ n

S
+ λ2δtn

(
(Π0(∇·f(Un)) −∇·f(Un), Xn

)
T n
S

− λ2δtn
Ä
∇·f(Un) + δt−1

n−1RT n
S

(Un − Un−1),ΠXn −Xn
ä
Ln

.

Let us denote I1, I2 and I3 the three terms in the right-hand side. We know that
cEh

α
K‖Rn‖L∞(K) ≤ cM‖f ′(Un)‖L∞(K), for all K ∈ TS ; this implies that

I1 := −λ2δtn (Rn,ΠXn −Xn)Ṫ n
S

≤ 2λ2δtn‖Rn‖L2( ˙T n
S
)‖Xn‖L2(Ω)

≤ ελ2‖Xn‖2L2(Ω) +
c2M
c2Eε

λ2(1+α)δt2(1−α)
n ‖f ′‖2(1−α)

L∞(Ω) |Ω|

≤ ελ2‖Xn‖2L2(Ω) +
c2MgE

ε
λ2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω),

where we set

(4.22) gE := ‖f ′‖2(1−α)
L∞(R) |Ω|c−2

E ‖U0‖−2
L2(Ω),

and ε > 0 is a constant yet to be chosen. To control I2, we first observe that
if ∇Un|K = 0 or f ′(Un)|K = 0, then δtn‖∇·f(Un) − Π0(∇·f(Un))‖2L∞(K) = 0,

otherwise,

δtn‖∇·f(Un) − Π0(∇·f(Un))‖2L∞(K) ≤ λhK4oscK(f , Un)‖∇Un‖2L∞(K)

≤ 4
λ

cM
νn1 |K‖∇Un‖2L∞(K).

Since the mesh is affine (2.9) also holds for ∇Un, i.e.,

‖∇Un‖2L∞(K) ≤ c2∞|K|−1‖∇Un‖2L2(K).
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Upon using this inequality and the L2-stability of Π we infer that

I2 := −λ2δtn
(
∇·f(Un) − Π0(∇·f(Un)),ΠXn −Xn

)
T n
S

≤ 4c∞c
− 1

2

M λ
5
2 δt

1
2
n‖

√
νn1∇Un‖L2(Ω)‖Xn‖L2(Ω) ≤ ελ2‖Xn‖2L2(Ω)

+
4c2∞
εcM

λ3δtn‖
√
νn1∇Un‖2L2(Ω).

We proceed as follows to control I3,

I3 := −λ2δtn
Ä
∇·f(Un) + δt−1

n−1RT n
S

(Un − Un−1),ΠXn −Xn
ä
Ln

≤ λ2δtn
(
‖∇·f(Un)‖L2(Ln) + cR‖δt−1

n−1(U
n − Un−1)‖L2(Ln)

)
‖ΠXn −Xn‖L2(Ln)

≤ λ2δtn
(
‖∇·f(Un)‖L2(Ln) + cR‖∇·f(Un)‖L2(Ln)

+ cR‖Rn‖L2(Ln)

)
‖ΠXn −Xn‖L2(Ω)

≤ 2(1 + cR)c
− 1

2

M λ
5
2 δt

1
2
n‖

√
νn1∇Un‖L2(Ω)‖Xn‖L2(Ω)

+ 2cRλ2δtn‖Rn‖L2(Ln)‖Xn‖L2(Ω),

where we used that νn1 |K = cMhk‖f ′(Un)‖L∞(K) for all K ∈ Ln together with the

L2-stability of Π0, Π and RT n
S

(Lemma 2.1). Using again that cEh
α
K‖Rn‖L∞(K) ≤

cM‖f ′(Un)‖L∞(K) for all K ∈ Ln ⊂ T n
S we infer that

I3 ≤ ελ2‖Xn‖L2 +
c2Rc2MgE

ε
λ2(1+α)δt2(1−α)

n ‖U0‖2L2 +
c′

εcM
λ3δtn‖

√
νn1∇Un‖2L2 ,

where gE is given by (4.22). Gathering the estimates on I1, I2, and I3 we finally
deduce the following estimate:

(4.23) − 2λ2δtn(f ′(Un)·∇Un,ΠXn)Ω ≤ 6ελ2‖Xn‖L2

+
c c2MgE

ε
λ2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω) +
c′

εcM
λ3δtn‖

√
νn1∇Un‖2L2(Ω).

Step 6 (Conclusion). Combining (4.21) and (4.23), and setting ε = 1
12 we can finally

rewrite (4.20) as follows:

λ2‖Xn‖L2(Ω) ≤ c c2MgEλ
2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω)

+ c′λ(1 + λ2c−1
M )δtn‖

√
νn1∇Un‖2L2(Ω).

We now combine the above estimate with (4.18) to obtain

‖Un+1 −Wn‖2L2 ≤ c c2MgEλ
2(1+α)δt2(1−α)

n ‖U0‖2L2

+ c′(1 + cMc2i + (4 + λ2)c−1
M )λδtn(‖

√
νn1∇Un‖2L2 + ‖

√
νn2∇Wn‖2L2).

Provided Λ0 is chosen so that c′Λ0(1 + cMc2i + (4 + Λ2
0)c

−1
M ) ≤ 1

2 , the above bound
together with (4.13) implies that the following energy estimate holds for λ ≤ Λ0,

‖Un+1‖2L2 − ‖Un‖2L2 + δtn
Ä
‖
√
νn1∇Un‖2L2 + ‖

√
νn2∇Wn‖2L2

ä
≤ c c2MgEλ

2(1+α)δt2(1−α)
n ‖U0‖2L2(Ω).
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Summing this inequality from n = 0 to N gives

‖Un+1‖2L2 +
n∑

i=0

δtn

(
‖
»
νi1∇U i‖2L2 + ‖

»
νi2∇W i‖2L2

)

≤ ‖U0‖2L2

Ä
1 + c c2MgET

2(1−α)λ2(1+α)(δt/T )1−2α
ä

which is the desired estimate. Note that gET
2(1−α) is a dimensionless constant. �

Remark 4.5 (No restriction on the polynomial order). We emphasize that one of
the key steps in the above stability proof is the control of the term ‖h∇Zn‖L2(K).
The two key arguments consist of the following: (i) subtracting the projection onto
constants of Zn, i.e., ‖h∇(Zn − Π0Zn)‖L2(K), so as to be able to use the inverse
estimate (4.16); (ii) forming a residual relying on the orthogonality property (4.17).
This argument is borrowed from [5], where it was restricted to piecewise linear finite
elements. We have extended it to any polynomial degree k ≥ 1 by taking advantage
of the nonlinear viscosity νn1 which satisfies

cMhKoscK(f , Un) ≤ νn1 |K , ∀K ∈ ˙T n
S .

Remark 4.6 (Restriction on α). The restriction α < 1
2 for stability in Theorem 4.1

seems to be purely technical. Thorough numerical experiments have shown that the
method is stable and convergent with α = 1. We then conjecture that Theorem 4.1
should hold in the range α ∈ [0, 1].

5. Midpoint RK2

The algorithm presented in §4.1 relies on a viscosity that is built from the pre-
vious time step (see (4.5)-(4.7)). This may seem a little odd since we are solving
a Cauchy problem. We propose in this section an alternative technique that con-
sists of constructing the viscosity on the fly. The method is implemented with the
midpoint RK2 technique.

5.1. The algorithm. Let t0 = 0 and let U0 ∈ V(T ) be an approximation of u0.
Let λ > 0 be a CFL number. Let Un ∈ V(T ) be the approximation of u at time tn,
n ≥ 0. Let δtn be a given time step possibly restricted later by the CFL number
(see (5.3)) and set tn+1 = tn + δtn. The midpoint RK2 algorithm is formulated as
follows: Seek Wn ∈ V(T ) and Un+1 ∈ V(T ) satisfying

(Wn, V )Ω − (Un, V )Ω +
δtn
2

(∇·f(Un), V )Ω = 0,(5.1)

(Un+1, V )Ω − (Un, V )Ω + δtn(∇·f(Wn), V )Ω + δtn(νn∇Wn,∇V )Ω = 0,(5.2)

for all V ∈ V(T ), where the viscosity νn is defined below. We assume that the time
step satisfies the condition

(5.3) δtn ≤ λ min
K∈T

hK

max(‖f ′(Un)‖L∞(K), ‖f ′(Wn)‖L∞(K))
.

Note that the above condition can only be verified a posteriori. If the condition (5.3)
is not satisfied, the computation of Wn and Un+1 is redone with a smaller time step,
say δtn is divided by 1.5. This procedure always terminates due to the uniform Lip-
schitz assumption on the flux f ; i.e., picking δtn smaller than 1

‖f ′‖L∞(R)
minK∈T hK
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1054 ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

always guarantees that (5.3) holds. To avoid issues induced by the boundary con-
dition we assume that Wn satisfy the following conservation properties:

(5.4) (∇·f(Wn),Wn)Ω ≥ 0.

We refer to §2.1 for a discussion on the validity of this assumption.
Let cM > 0, cE > 0 and α ≥ 0 be three real numbers, and we introduce the

following time-dependent partition of T = T n
V ∪ T n

S , Ln := T n
S \ ˙T n

S ,

(5.5) T n
S := {K ∈ T : cE‖hαRn‖L∞(K) ≤ cM‖f ′(Un)‖L∞(K)}, T n

V := T \T n
S ,

where the residual Rn is defined by

(5.6) Rn := 2
Wn − Un

δtn
+ ∇·f(Wn).

We define the viscosity νn : Ω → R at time tn, n ≥ 1, as

νn|K =

®
min(νnM |K , νn1 |K), if K ∈ T n

V ∪ ˙T n
S ,

νnM |K if K ∈ Ln,
(5.7)

where

νnM |K := cMhK max(‖f ′(Un)‖L∞(K), ‖f ′(Wn)‖L∞(K)),(5.8)

νn1 |K := hK max(cE‖hαRn‖L∞(K), cMoscK(f ,Wn), cMnlK(f ,Wn, Un)).(5.9)

The oscillation oscK(f ,Wn) is defined in (4.8) and the nonlinear variation
nlK(f ,Wn, Un) is defined in (4.10).

Remark 5.1 (Consistency of viscosities). The set T n
V ∪ Ln is composed of the ele-

ments where the viscosity saturates to first-order, νn = cM max(‖h f ′(Un)‖L∞(K),
‖h f ′(Wn)‖L∞(K)), and T n

S is composed of the elements where the viscosity is

formally higher-order, νn ≈ cE‖h1+αRn‖L∞(K). Note that ‖h1+αRn‖L∞(K) is for-

mally of order O(h1+α
K δtn), whereas hKoscK(f ,Wn) and hKnlK(f ,Wn, Un) are of

order O(h3
K) and O(hKδt2n), respectively. We refer to Remarks 4.1–4.3 for dis-

cussions on the viscosities. Note again that the consistency error induced by the
entropy viscosity is of higher order than that of the second-order RK2 method.

Remark 5.2 (Definition of cM and cE). The constants cM and cE are user-defined;
cM is nondimensional and of order one, whereas cE is dimensional. For instance,
just like in Remark 4.4 one can set

(5.10) cE := cE
D1−α

|Ω|−1/2‖U0‖L2(Ω)

or cE := cED
1−α‖u0‖−1

L∞(Ω), where D := diam(Ω) and cE is a user-defined non-

dimensional constant of order one; see also Remark 3.1.

We mention two useful bounds that we will use repeatedly. On one hand,

δtn‖f ′(V )·∇ϕ‖2L2(τ) ≤ c−1
M λ‖

√
νn ∇ϕ‖2L2(τ),(5.11)

holds for V = Un or V = Wn and for any subset τ ⊂ T n
V ∪Ln and any ϕ ∈ H1(τ ).

On the other hand,

νn|K ≤ cM max(‖h f ′(Un)‖L∞(K), ‖h f ′(Wn)‖L∞(K)), ∀K ∈ T ,(5.12)

max(cMhKoscK(f ,Wn), cMhKnlK(f ,Wn, Un)) ≤ νn|K , ∀K ∈ T .(5.13)
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5.2. Stability analysis of RK2/midpoint. We now analyze the L2-stability of
the Midpoint time discretization of (2.1).

Theorem 5.1 (Stability of RK2/midpoint). Let (U i)n+1
i=0 , (W i)ni=0 be the sequences

produced by the algorithm (5.1)–(5.2)–(5.7). There is Λ0 > 0 that depends only on
the user-defined parameters cM , cE, the Lipschitz constant of the flux, and on the
mesh family constants c0, ci, and there is a constant c that additionally depends
linearly on T 2(1−α) so that the following L2-stability estimate holds for all tn ≤ T
and all λ ∈ (0,Λ0],

‖Un+1‖2L2(Ω) +
n∑

i=0

δti‖
√
νi∇Wn‖2L2(Ω) ≤ ‖U0‖2L2(Ω)

Ä
1 + cλ2(1+α)(δt/T )1−2α

ä
,

where δt := maxi=0,...,n δti. Moreover, the algorithm is L2-stable if α ≤ 1
2 .

Proof. The proof is similar to that provided in §4 for the Heun method and we only
outline the main steps.

Step 1. Testing (5.2) with Wn gives

(5.14) ‖Un+1‖2L2(Ω) − ‖Un‖2L2(Ω) + 2δtn‖
√
νn∇Wn‖2L2(Ω) ≤ (Y n, Un+1 − Un)Ω,

where we used the conservation property (5.4) and the notation

Y n = Un+1 + Un − 2Wn.

In view of (5.14), we need to establish a bound on ‖Y n‖L2(Ω). The linear combi-
nation (5.2)−2×(5.1) gives us a way to control Y :

(5.15) (Y n, V )Ω = −δtn((f ′(Wn) − f ′(Un)) · ∇Wn, V )Ω

− δtn(f ′(Un)∇(Wn − Un), V )Ω − δtn(νn∇Wn,∇V )Ω, ∀V ∈ V(T ).

Owing to the definition of the viscosity νn (see (4.10) and (5.13)), we have

δtn‖f ′(Wn) − f ′(Un)‖2L∞(K) ≤ 4νn|Kλc−1
M ,

which in turn gives
(5.16)

−δtn((f ′(Wn) − f ′(Un)) · ∇Wn, V )Ω ≤ 2c
− 1

2

M λ
1
2 δt

1
2
n‖

√
νn∇Wn‖L2(Ω)‖V ‖L2(Ω).

The second term in the right-hand side of (5.15) is handled as follows:

−δtn(f ′(Un)∇(Wn − Un), V )Ω ≤ λ‖h∇(Wn − Un)‖L2(Ω)‖V ‖L2(Ω).

For the third term in the right-hand side of (5.15), we use the bound (5.12) on
νn|K and an inverse estimate

−δtn(νn∇Wn,∇V )Ω ≤ cic
1
2

Mλ
1
2 δt

1
2
n‖

√
νn∇Wn‖L2(Ω)‖V ‖L2(Ω).

Gathering the above three estimates we arrive at
(5.17)

‖Y n‖2L2(Ω) ≤ λ2‖h ∇(Wn − Un)‖2L2(Ω) + c (c2i cM + c−1
M )λδtn‖

√
νn∇Wn‖2L2(Ω).

Then upon introducing the notation Zn := Wn −Un, we now realize that we must
find a bound on λ‖h ∇Zn‖L2(Ω).
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1056 ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

Step 2. Recalling that Π0 is the L2-projection over constants and that Π is the
L2-projection onto V(T ), we set Xn := Zn − Π0Zn and we observe that

c−2
0 ‖Xn‖2L2 ≤ ‖h∇Zn‖2L2 =

∑
K∈T

‖h∇Xn‖2L2(K) ≤ c2i ‖Xn‖2L2 = c2i (ΠXn, Zn)Ω.

(5.18)

Then, (5.1) together with (5.18) and the stability of the L2-projection yields

λ2‖h∇Zn‖2L2(Ω) ≤ −1

2
c2i δtnλ

2(ΠXn,∇·f(Un))Ω

≤ −1

2
c2i δtnλ

2(ΠXn, f ′(Un)·∇Wn)Ω +
1

2
c2i δtnλ

2(ΠXn, f ′(Un)·∇Zn)Ω

≤ −1

2
c2i δtnλ

2(ΠXn, f ′(Un)·∇Wn)Ω +
1

2
c2i c0λ

3‖h∇Zn‖2L2(Ω).

Restricting Λ0 ≤ c−2
i c−1

0 , we deduce that

(5.19) λ2‖h∇Zn‖2L2(Ω) ≤ −c2i δtnλ
2(ΠXn, f ′(Un)·∇Wn)Ω.

We are now going to use different techniques to deduce a bound from above on the
quantity δtnλ

2|(ΠXn, f ′(Un)·∇Wn)Ω| in the smooth and in the viscous regions.

Step 3 (Control over TV ). Invoking (5.11) with V = Un and the stability of the
L2-projection, we write

δtnλ
2|(ΠXn, f ′(Un)·∇Wn)T n

V
| ≤ c

− 1
2

M δt
1
2
nλ

5
2 ‖Xn‖L2(Ω)‖

√
νn ∇Wn‖L2(T n

V
),

which, owing to (5.18), gives

δtnλ
2|(ΠXn, f ′(Un)·∇Wn)T n

V
| ≤ελ2‖h∇Zn‖2L2(Ω)

+
c20c

−1
M

4ε
λ3δtn‖

√
νn∇Wn‖2L2(Ω),

(5.20)

where ε is a constant yet to be chosen.

Step 4 (Control over TS). We now focus our attention on the smooth region, and
we use the property that the residual (5.6) is small in the smooth region. We have

δtnλ
2(ΠXn, f ′(Un)·∇Wn)T n

S
= δtnλ

2(ΠXn, (f ′(Un) − f ′(Wn))·∇Wn)T n
S

+ δtnλ
2(ΠXn,∇·f(Wn))T n

S
.

Note that the first term in the right-hand side of the above expression is directly
absorbed in the viscosity using (5.16). Indeed, the stability of Π and (5.18) imply
that

δtnλ
2(ΠXn, (f ′(Un) − f ′(Wn))·∇Wn)T n

S
≤ c

− 1
2

M c0λ
5
2 δt

1
2 ‖

√
νn∇Wn‖L2‖h∇Zn‖L2

≤ ελ2‖h ∇Zn‖2L2(Ω) +
c20c

−1
M

4ε
λ3δtn‖

√
νn∇Wn‖2L2(Ω),

where ε > 0 is yet to be chosen. The remaining term, δtnλ
2(ΠXn,∇·f(Wn))T n

S
, is

the most critical one. We start by writing

δtnλ
2(ΠXn,∇·f(Wn))T n

S
= δtnλ

2(ΠXn,Π0∇·f(Wn))T n
S

+ δtnλ
2(ΠXn,∇·f(Wn) − Π0∇·f(Wn))T n

S
.
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STABILITY ANALYSIS OF EXPLICIT ENTROPY VISCOSITY METHODS 1057

Taking advantage of the orthogonality of Xn := Zn − Π0Zn with respect to piece-
wise constants and of the orthogonality of Xn − ΠXn with respect to elements in
V(T ), we infer that

δtnλ
2(ΠXn,∇·f(Wn))T n

S
= δtnλ

2(ΠXn −Xn,Π0∇·f(Wn))T n
S

+ δtnλ
2(ΠXn,∇·f(Wn) − Π0∇·f(Wn))T n

S
,

= δtnλ
2(ΠXn −Xn, (δtn)−1RT n

S
(Wn − Un) + ∇·f(Wn))T n

S

+ δtnλ
2(ΠXn −Xn,Π0∇·f(Wn) −∇·f(Wn))T n

S

+ δtnλ
2(ΠXn,∇·f(Wn) − Π0∇·f(Wn))T n

S
,

where RT n
S

is defined by (2.13) and is the identity operator over Ṫ n
S . The direct

decomposition of the domain partition into T = Ṫ n
S ∪Ln∪T n

V (see Figure 1) yields

δtnλ
2(ΠXn,∇·f(Wn))T n

S
= δtnλ

2(ΠXn −Xn, Rn)Ṫ n
S

+ δtnλ
2(Xn,∇·f(Wn) − Π0∇·f(Wn))T n

S

+ δtnλ
2(ΠXn −Xn, (δtn)−1RT n

S
(Wn − Un) + ∇·f(Wn))Ln

=: I1 + I2 + I3.

Proceeding as in the proof of Theorem 4.1, we obtain the following bounds for each
term:

I1 ≤ ελ2‖Xn‖2L2(Ω) +
c2MgE

ε
λ2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω),

I2 ≤ ελ2‖Xn‖2L2(Ω) +
4c2∞
εcM

λ3δtn‖
√
νn∇Wn‖2L2(Ω),

I3 ≤ ελ2‖Xn‖L2 +
cc2MgE

ε
λ2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω) +
c′

εcM
λ3δtn‖

√
νn∇Wn‖2L2(Ω),

where gE is defined in (4.22). Gathering the above estimates and using (5.18) yields

(5.21) δtnλ
2(ΠXn,∇·f(Wn))T n

S
≤ 3c20ελ

2‖h ∇Zn‖L2

+ c
c2MgE

ε
λ2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω) +
c′

εcM
λ3δtn‖

√
νn2∇Un‖2L2(Ω).

Step 5 (Control of ‖h∇Zn‖L2(Ω) and ‖Y n‖L2(Ω)). Combining (5.20) and (5.21),

and setting ε = 1
8c20

, we can finally rewrite (5.19) as follows:

(5.22) λ2‖h∇Zn‖2L2 ≤ c c2MgEλ
2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω)

+ c′(c2i cM + c−1
M )λ3δtn‖

√
νn∇Wn‖2L2(Ω).

We now combine the above estimate with (5.17) to arrive at

(5.23) ‖Y n‖2L2 ≤ c c2MgEλ
2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω)

+ c′λ(1 + λ2)(c2i cM + c−1
M )δtn‖

√
νn∇Wn‖2L2(Ω).
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1058 ANDREA BONITO, JEAN-LUC GUERMOND, AND BOJAN POPOV

Step 6. We now conclude. Upon observing that

|(Y n, Un+1 − Un)Ω| = |‖Y n‖2L2(Ω) + 2(Y,Wn − Un)Ω|
≤ ‖Y n‖2L2(Ω) + ‖Y n‖L2(Ω)‖Zn‖L2(Ω).

and by using the estimates (5.22) and (5.23) in (5.14), we infer that

‖Un+1‖2L2(Ω) − ‖Un‖2L2(Ω) + 2δtn‖
√
νn∇Wn‖2L2(Ω)

≤ c c2MgEλ
2(1+α)δt2(1−α)

n ‖U0‖2L2(Ω)

+ c′λ(1 + λ2)(c2i cM + c−1
M )δtn‖

√
νn∇Wn‖2L2(Ω).

Upon further restricting Λ0 so that c′Λ0(1 + Λ2
0)(c

2
i cM + c−1

M ) ≤ 1, we conclude by
using the usual telescoping argument. �

Remark 5.3 (Restriction on α). The stability restriction α < 1
2 in Theorem 5.1

seems to be technical. We conjecture again that Theorem 5.1 should hold in the
range α ∈ [0, 1].

6. Discussion on entropies

The method discussed above bears some resemblance to the residual-based shock
capturing techniques from [15,23] when E(u) = u. The present method is, however,
significantly different from that in [15, 23] in the sense that the viscosity is scaled
differently, it is not allowed to exceed the first-order viscosity cM‖hβ‖L∞(K), the
time stepping is explicit, and our analysis does not require any sort of additional
linear stabilization to work properly (Galerkin-Least-Squares, streamline diffusion
[16], SUPG [3], Discontinuous Galerkin [17] or edge stabilization [6]). Our analysis
is similar in spirit to that of [4], where convergence of a class of nonlinear viscosity
methods for the one-dimensional Burgers equation is performed without using any
type of linear stabilization. This idea was later applied to viscoelastic systems in
[2]. However, our work differs from [4] in that the viscosity is built differently and
the time is kept continuous in [4].

We illustrate the method on the inviscid Burgers equation in Figure 2. The do-
main is periodic, Ω = (0, 1), the initial data is u0(x) = sin(2πx). The computation
is done with continuous piecewise linear finite elements and RK2 time stepping
(the Heun and the midpoint method give similar results). The solution is shown
at T = 0.25. The displayed results have been obtained with the residual viscosity,
E(u) = u, and the square entropy E(u) = 1

2u
2. We observe that the method per-

forms very well in both cases and the viscosity focuses in the shock (note that the
viscosity field in displayed in log scale).

In some cases it may be beneficial to use nonlinear entropies like E(u) = |u−c|γ ,
γ > 1. Although we have numerically observed that the method performs well with
these entropies, we have not yet been able to prove stability. To motivate the
use of higher-order entropies even for the linear transport equation, f(u) = βu,
we show in Figure 3 numerical tests on the transport equation in the unit disk
Ω = {(x, y) ∈ R

2,
√
x2 + y2 < 1} using the entropy viscosity method with three

different entropies: E(u) = u − 1
2 (Figure 3(a)), E(u) = (u − 1

2 )2 (Figure 3(b)),

and E(u) = (u− 1
2 )30 (Figure 3(c)). The velocity field is a solid rotation of angular

velocity 2π, i.e., β = 2π(−y, x). The initial field is u0(x) = 1 if x is in the disk of
radius 0.5 centered at (0.6, 0) and u0(x) = 0 otherwise. The space approximation
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STABILITY ANALYSIS OF EXPLICIT ENTROPY VISCOSITY METHODS 1059

is done on a mesh composed of 25901 P2 nodes (h ≈ 0.025). The time stepping is
done with the SSP RK3 method. The solution is computed at T = 10, i.e., after
10 revolutions. This example shows that the higher the nonlinearity in the entropy
the better the performance of the method when applied to the linear transport
equation with piecewise constant data (at least in the eyeball-norm).

Finally, we would like to emphasis once again that the choice of entropy viscosity
to be used is problem-dependent. It may happen that for problems with nonconvex
fluxes more than one entropy may have to be used to construct the viscosity.

(a) E(u) = u (b) E(u) = 12u
2

(c) E(u) = u (d) E(u) = 12u
2

Figure 2. Burgers equation, P1 continuous finite elements, RK3,
50 elements.
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Figure 3. Tests on the linear transport equation with three dif-
ferent entropies.
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