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1. Introduction. Given a linear, first-order PDE in a domain Ω ⊂ Rd,

Lu = f,(1.1)

with suitable boundary conditions, the objective of this paper is to present an ap-
proximation technique that can handle right-hand sides in L1(Ω) and, more generally,
right-hand sides in Lp(Ω), 1 ≤ p < +∞.

1.1. Introductory comments. The number of attempts at approximating
(1.1) directly in L1(Ω) seem to be extremely few (see the series of papers by Lav-
ery [29, 30, 28] and the iteratively reweighted least-squares method of Jiang [23] and
[24, Chap. 9]) or seem to have encountered some theoretical difficulties (see [32]).
This is in sharp contrast with the fact that an enormous amount of work has been
dedicated to the study of first-order PDEs and their various nonlinear generalizations
in L1(Ω). The main difficulty is that when expressed directly in L1(Ω) the discrete
problems consist in minimizing nondifferentiable functionals; see, e.g., [23]. The lack
of theory and of practical popular algorithms for minimizing this type of functional
is responsible for the general preference of authors to seek an approximate solution
in the L2(Ω) framework where differentiability rules, and the force of habit has made
this point of view an undisputed paradigm. The goal of the present work is to show
that, as claimed in Jiang [23], when the right-hand side is really so rough as to not be
in L2(Ω) but in L1(Ω) only or when the coefficients of the differential operator are so
rough that the solution is only meaningful in L1(Ω), then it really pays off to approx-
imate the solution to (1.1) directly in L1(Ω). In this case, the discontinuities of the
solution are captured as sharply as the grid permits without resorting to adaptive re-
finement, and numerical tests reveal that the method is not plagued by spurious over-
or undershootings. Contrary to standard stabilized L2(Ω)-based techniques, the direct
L1(Ω) approximation does not require additional ad hoc tunable coefficients or limit-
ing procedures (see, e.g., Galerkin least-squares techniques [16, 25, 26], discontinuous
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Galerkin methods [31, 17], bubble stabilization [13, 3, 14], or subgrid stabilization
[20, 21, 15]).

The paper is organized as follows. In section 2, we introduce an abstract problem,
together with its discrete counterpart, and we give an abstract convergence result. We
reformulate this result in the Lp(Ω) setting in section 3, and we describe an algorithm
for computing the approximate solution in this setting. We illustrate numerically
the method in section 4, where we solve transport equations and advection-diffusion
equations in mixed form in L1(Ω). We record conclusions in section 5.

1.2. Notation. Let Ω be an open, bounded, connected Lipschitz domain in
Rd. We denote by |Ω| the measure of Ω. For every Lebesgue measurable function
v : Ω −→ Rm, m ≥ 1, we denote by v ·w the Euclidean scalar product in Rm. For 1 ≤
p < +∞, we denote by ‖v‖�p the discrete �p-norm of v, i.e., ‖v‖�p = (

∑
1≤i≤m vpi )

1
p .

As usual, we denote by Lp(Ω)
m

the real Banach space of Rm-valued functions whose

pth power is Lebesgue integrable, i.e., ‖v‖Lp(Ω)m = (
∫
Ω
‖v(x)‖p�pdx)

1
p . W 1,p(Ω) is the

space of functions in Lp(Ω) whose partial derivatives in the distributional sense can
be identified with functions in Lp(Ω). L∞(Ω) is the real Banach space of essentially
bounded functions. Hereafter we identify the dual of L1(Ω) with L∞(Ω).

Considering two real numbers A, B, we shall use the expression A � B to say that
there exists a generic positive constant c, independent of the discretization parameters,
such that (s.t.) A ≤ cB.

2. An abstract problem.

2.1. The continuous setting. Let E and F be two Banach spaces with norms
‖ · ‖E and ‖ · ‖F , respectively. Let L : E −→ F be a bounded linear operator, i.e.,
L ∈ L(E;F ). We denote by L∗ : F ′ −→ E′ its adjoint, where E′ and F ′ are the
duals of E and F , respectively. We assume also that L is bijective. Let us recall the
following important consequence of Banach’s closed range theorem and open mapping
theorem (see, e.g., [12, p. 29] or [36, p. 205]).

Lemma 2.1. An operator L ∈ L(E;F ) is bijective if and only if there is a constant
α > 0 s.t.

∀u ∈ E, α‖u‖E ≤ ‖Lu‖F ,(2.1)

∀f ′ ∈ F ′, (L∗f ′ = 0) ⇒ (f ′ = 0).(2.2)

We want to solve the following problem: For f ∈ F ,{
find u ∈ E s.t.
Lu = f in F .

(2.3)

This problem is well-posed, and (2.1) yields the following stability property:

‖u‖E ≤ 1

α
‖f‖F .

Let us now introduce an alternative formulation of problem (2.3). Let us define
the functional J : E −→ R s.t. J(v) = ‖Lv−f‖F , and consider the following problem:{

Find u ∈ E s.t.
J(u) ≤ J(v) ∀v ∈ E.

(2.4)
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It is clear that problems (2.4) and (2.3) are equivalent in the sense that they have the
same unique solution.

To gain more insight on the nature of problem (2.4), let us consider the case where
F is a Hilbert space.

Proposition 2.1. If F is a Hilbert space (equipped with the scalar product
(v, w)F = 1

2 (‖v + w‖2
F − ‖v‖2

F − ‖w‖2
F )), the solution to (2.4) is also the unique

solution to the following problem:{
Find u ∈ E s.t.
(Lu,Lv)F = (f, Lv)F ∀v ∈ E.

(2.5)

Proof. J and J2 have the same minimum, J2 is clearly differentiable, and (2.5) is
the first-order condition for optimality. Owing to (2.1), the bilinear form (Lu,Lv)F is
continuous and coercive, and (f, Lv)F is continuous; hence, existence and uniqueness
of the solution are easy consequences of the Lax–Milgram theorem.

Actually, (2.5) is the so-called least-squares formulation of (2.3), and it can also
be interpreted as the Galerkin formulation of the problem

L∗Lu = L∗f.

Hence, (2.4) is a simple generalization of the least-squares method to non-Hilbertian
settings.

2.2. The discrete setting. We now look for an approximate solution to (2.4).
Let (Eh)h>0 be a sequence of finite-dimensional spaces s.t. Eh ⊂ E. We assume that
the sequence of spaces (Eh)h>0 has some interpolation properties; that is, we assume
that there is a dense normed subspace W ⊂ E and a function ε(h), continuous at zero
with ε(0) = 0, s.t.

∀v ∈ W, inf
vh∈Eh

‖v − vh‖E � ε(h)‖v‖W .(2.6)

The discrete counterpart to (2.4) is as follows:{
Find uh ∈ Eh s.t.
J(uh) = min

vh∈Eh

J(vh).(2.7)

The main result of this paper is stated in the following theorem.
Theorem 2.1. (i) Problem (2.7) has at least one global minimizer.
(ii) There are no local minimizers.
(iii) All minimizers satisfy the following stability property:

‖uh‖E � ‖f‖F .(2.8)

(iv) All minimizers satisfy the a priori error bound

‖u− uh‖E � min
vh∈Eh

‖u− vh‖E ,(2.9)

and the following a posteriori error estimate holds:

‖u− uh‖E � ‖f − Luh‖F .(2.10)

Proof. (i) Let Kh ⊂ Eh be the ball of radius 2
α‖f‖F centered at 0. It is clear that

inf
vh∈Eh

J((vh) = min

(
inf

vh∈Eh\Kh

J(vh), inf
vh∈Kh

J(vh)

)
.
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But for all vh ∈ Eh \Kh (i.e., ‖vh‖E > 2
α‖f‖F ) we have

J(vh) ≥ ‖Lvh‖F − ‖f‖F
≥ α‖vh‖E − ‖f‖F
> ‖f‖F
> J(0),

where we have used the stability condition (2.1). Since 0 ∈ Kh, we infer that

inf
vh∈Eh\Kh

J(vh) > J(0) ≥ inf
vh∈Kh

J(vh).

That is to say,

inf
vh∈Eh

J(vh) = inf
vh∈Kh

J(vh).

As a result, the existence of a global minimizer is a simple consequence of the fact
that J is continuous and Kh is compact (since Eh is finite-dimensional).

(ii) The functional J(vh) = ‖Luh − f‖F is obviously convex; hence, local mini-
mizers of (2.7) are necessarily global.

(iii) From (i) we infer that any minimizer uh is in Kh; hence, ‖uh‖E � ‖f‖F .
(iv) The stability condition (2.1) yields

α‖u− uh‖E ≤ ‖Lu− Luh‖F
= ‖f − Luh‖F
= min

vh∈Eh

‖f − Lvh‖F
= min

vh∈Eh

‖Lu− Lvh‖F
≤ ‖L‖L(E;F ) min

vh∈Eh

‖u− vh‖E .

The proof is complete.
Remark 2.1. Note that the question of the uniqueness of uh is open. Actually,

it may happen that uh is not unique. To gain some insight on this problem, let us
consider D = {(x1, x2) ∈ R2 |x1 + x2 ≥ 1}, x0 = (0, 0), and let us define S to be
the set of points in D that minimize the �1-distance to x0. A simple calculation
shows S = {(x1, x2) ∈ R2 |x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}; that is, even though the
functional and D are convex, the solution to this minimization problem is not unique.
Of course, uniqueness would have been guaranteed if we had considered the Euclidean
(Hilbertian) distance.

Now, using a standard density argument, we deduce the following corollary.
Corollary 2.1. Under the hypotheses of Theorem 2.1 and (2.6) we have

lim
h→0

‖u− uh‖E = 0,(2.11)

and if u ∈ W , the following a priori error estimate holds:

‖u− uh‖E � ε(h)‖u‖W .(2.12)

Remark 2.2.

(i) Note that the a priori error estimate (2.12) is optimal since it is bounded by
the interpolation error up to a constant.
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(ii) Note that the price paid for the approximation optimality when F = L1(Ω)
is the loss of differentiability. More precisely, the functional J(vh) = ‖Luh −
f‖L1(Ω) is not differentiable; hence, no first-order optimality condition can be
written. To better appreciate the difficulty we face here, think of the following
two functionals: φ(x) = x2 and ψ(x) = |x|. It is clear that the minimum of φ
is reached at x0 when φ′(x0) = 2x0 = 0, whereas no nice first-order optimality
condition can be written for ψ except for the awkward statement that 0 is
in the subdifferential of ψ(x0), i.e., 0 ∈ ∂ψ(x0). We describe an algorithm in
section 3.6 to solve this difficulty.

3. The Lp(Ω) setting. We show in this section how the above abstract result
can be reformulated in the Lp(Ω) setting for first-order PDEs.

3.1. Formulation of the problem. In the context of first-order PDEs, F is
usually a space Lp(Ω)m, 1 ≤ p < ∞ (or possibly a closed subspace of Lp(Ω)m), and
E is the domain of an unbounded linear operator

L : D(L) = E ⊂ Lp(Ω)m −→ Lp(Ω)m = F

whose graph is closed in Lp(Ω)m × Lp(Ω)m and whose domain D(L) is dense in
Lp(Ω)m so that when the vector space E = D(L) is equipped with the graph norm

‖v‖E = (‖v‖pLp(Ω)m + ‖Lv‖pLp(Ω)m)
1
p it becomes a Banach space.

In this setting, the abstract problem (2.3) is interpreted as follows: For f ∈
Lp(Ω)m, {

find u ∈ E s.t.
Lu = f in Lp(Ω)m.

(3.1)

Owing to the Riesz representation theorem, which permits us to identify the dual of
Lp(Ω)m with Lp′

(Ω)m, where 1
p + 1

p′ = 1, this problem can be alternatively put into
the following form: ⎧⎨

⎩
Find u ∈ E s.t.∫

Ω

φ · Lu =

∫
Ω

f · φ ∀φ ∈ Lp′
(Ω)m.

(3.2)

3.1.1. Example 1: Advection-reaction. Let us consider an advection-reaction
problem. Let β be a smooth vector field in Rd, say β ∈ L∞(Ω)d and ∇·β ∈ L∞(Ω),
and set

∂Ω− = {x ∈ ∂Ω | β(x) · n(x) < 0},
∂Ω+ = {x ∈ ∂Ω | β(x) · n(x) > 0}.

∂Ω− is the inflow boundary, ∂Ω+ is the outflow boundary, and n(x) is the unit exterior
normal to ∂Ω at x ∈ ∂Ω. It may happen that these two subsets of ∂Ω are empty if β
is s.t. β · n(x) = 0 for all x ∈ ∂Ω. Let µ be a function in L∞(Ω), and assume that
there is a constant µ0 > 0 so that

µ(x) ≥ µ0 > 0 a.e. x in Ω.(3.3)

We introduce the differential operator

L(u) = µu + ∇·(uβ),
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with domain

E = D(L) = {w ∈ L1(Ω); ∇·(wβ) ∈ L1(Ω); β · n|∂Ω− = 0} ⊂ L1(Ω) = F.

It can be shown that L is an isomorphism from E to F ; i.e., (2.1) and (2.2) hold.
Remark 3.1. If µ = 0, the hypothesis (3.3) is not satisfied. Nevertheless, L is still

an isomorphism if β is a smooth filling field, i.e., if for almost every x in Ω there is a
characteristic of β that starts from x and reaches ∂Ω− in finite time. The reader is
referred to Azerad and Pousin [1] for other details on this problem.

3.1.2. Example 2: The Darcy equation. Let Ω be a porous medium char-
acterized by the permeability tensor K(x). This tensor is assumed to be symmetric
positive definite, and its smallest and largest eigenvalues are assumed to be bounded
from below and from above uniformly in Ω. We consider the following problem:⎧⎨

⎩
K−1 · u + ∇p = f ,
∇·u + αp = g,
p|∂Ω = 0.

(3.4)

This problem is known as the Darcy problem. It is also the mixed form of the Poisson
problem. Nonlinear versions of (3.4) play important roles in underground storage
problems, hydrogeology, and the petroleum industry. It is very often coupled with a
transport equation for the concentration of a chemical species or a phase fraction.

To formulate (3.4) in the Lp(Ω) setting, we introduce some definitions:

X = {v ∈ Lp(Ω)
d
; ∇·v ∈ Lp(Ω)},

‖v‖X = (‖v‖p
Lp(Ω)d

+ ‖∇·v‖pLp(Ω))
1
p ,

Y = {q ∈ Lp(Ω); ∇q ∈ Lp(Ω)
d
, q|∂Ω = 0},

‖q‖Y = ‖q‖W 1,p(Ω) = (‖q‖pLp(Ω) + ‖∇q‖p
Lp(Ω)d

)
1
p .

X and Y are Banach spaces. We set E = X × Y and F = Lp(Ω)
d × Lp(Ω), which

we equip with the norms ‖(v,q)‖E = (‖v‖pX +‖q‖pY)
1
p and ‖(v,q)‖F = (‖v‖p

Lp(Ω)d
+

‖q‖pLp(Ω))
1
p , respectively. We now define the operator

L : E −→ F,
(v,q) �−→ (K−1v + ∇q,∇·v + αq).

L is clearly continuous, and it can be shown that it is an isomorphism if α ≥ 0, for
1 < p < +∞, and if α > 0 for p = 1 (see, e.g., [6, 11, 34]).

3.2. Friedrichs’s systems. The above two examples are particular cases of
Friedrichs’s symmetric systems; see [19]. Most of what is said hereafter generalizes to
this broad class of PDEs.

3.3. The discrete setting. Henceforth, we assume that F is a closed sub-
space of Lp(Ω)m. We assume also that we are given a sequence of regular finite
element meshes (Th)h>0 covering the domain Ω. With each mesh we associate a
finite-dimensional space Eh ⊂ E having some interpolation properties; that is, there
is a dense normed subspace of smooth functions W ⊂ E and a continuous function
ε(h) with ε(0) = 0 s.t. (2.6) holds. For Pk or Qk Lagrange finite elements, we have
ε(h) = hk, where h is the meshsize.
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3.4. A brief review of some standard techniques. One of the standard
ways of approximating (3.2) without invoking a minimization principle like (2.7) is
the Galerkin technique. This method consists in replacing the solution space, E, and
the test space, Lp′

(Ω)m, by the same discrete space Eh as follows:⎧⎨
⎩

Find uh ∈ Eh s.t.∫
Ω

φh · Luh =

∫
Ω

φh · f ∀φh ∈ Eh.
(3.5)

Note that using the same space for testing the equation and approximating the so-
lution guarantees that the corresponding linear system has as many equations as
unknowns. Even though it often happens that the discrete solution is unique, (3.5)
does not yield stability in the E-norm in general. To better appreciate this point,
let us consider the scalar problem u′ = f with u(0) = 0 in the one-dimensional (1D)
domain Ω = ]0, 1[ , where we assume f ∈ L2(Ω). For N ∈ N�, let us set h = 1/N and
xi = ih for i ∈ {0, 1, . . . , N}. We define

Eh = {vh ∈ C0(Ω); vh|[xi,xi+1] ∈ P1, 0 ≤ i ≤ N − 1; vh(0) = 0}.(3.6)

It is clear that Eh ⊂ E = {v ∈ H1(Ω); v(0) = 0}. The discrete Galerkin formulation
of the problem is as follows:⎧⎨

⎩
Find uh in Eh s.t.∫ 1

0

vhu
′
h =

∫ 1

0

vhf ∀vh ∈ Eh,
(3.7)

and its stability constant (i.e., the counterpart of α in (2.1)) is

αh := inf
uh∈Eh

sup
vh∈Eh

∫ 1

0
u′
hvh

‖uh‖H1(Ω)‖vh‖L2(Ω)
.

The following negative result can be proved.
Theorem 3.1. There are two constants c1 > 0 and c2 > 0, independent of h, s.t.

c1h ≤ αh ≤ c2h.

Proof. See, e.g., Ern and Guermond [18, pp. 197–199].
In other words, the stability constant for the approximate problem (3.7) goes

to zero as the mesh is refined. This result is the main reason for the failure of the
Galerkin technique to work properly for first-order PDEs in general.

An interesting alternative to the Galerkin formulation consists in the least-squares
formulation. The origins of the least-squares technique can be traced back to Gauss
(Theoria Motus Corporum Coelestium (1809)). As early papers in the numerical
analysis literature we cite the series of papers by Bramble and Schatz [9, 10] published
in 1970. Since then, it has been applied to a wide variety of problems (see, e.g.,
[2, 33, 24]). This method is clearly optimal in the L2(Ω)-graph norm, but it performs
poorly when the source term is not in L2(Ω) but in L1(Ω) only or the boundary data
are discontinuous (see the numerical tests in section 4).

The list of alternative techniques for solving (3.2) is quite long, and it is out of the
question to make this list exhaustive, but among the most popular ones is the so-called
Galerkin least-squares method [16, 25], which combines the accuracy of the Galerkin
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method and the stability properties of the least-squares method. Other methods of
interest are those based on discontinuous interpolation spaces (e.g., discontinuous
Galerkin methods [31, 17]), on bubble functions (e.g., residual free bubble methods
[13, 3, 14]), or on a hierarchical decomposition of the approximation space (e.g.,
subgrid stabilization [20, 21, 15] or spectral viscosity [35]). Although all these methods
are quite efficient in general, they cannot cope with discontinuities and boundary
layers without resorting to shock-capturing and nonlinear limiting techniques [26, 22]
since they are all L2-based; i.e., they rely on a priori L2 estimates.

3.5. The discrete problem and regularization. Upon setting J(v) = ‖Lv−
f‖Lp(Ω)m , the minimization problem we would like to solve is to find uh in Eh such that
J(uh) = minvh∈Eh

J(vh). Actually, since R+ � x �−→ xp is an increasing function, an
equivalent reformulation consists of setting

J (v) = ‖Lv − f‖pLp(Ω)m

and considering the following problem:{
Find uh ∈ Eh s.t.
J (uh) = min

vh∈Eh

J (vh).(3.8)

To handle this possibly nondifferentiable minimization problem by means of stan-
dard gradient techniques, we propose to regularize it as follows. Let us define ε > 0
and introduce

ϕε(r) = r2(r + ε)p−2.(3.9)

Then we regularize Rm � x �−→ ‖x‖p�p by replacing this function by

ψε(x) =

m∑
i=1

ϕε(|xi|).(3.10)

Upon denoting by sg(t) the sign function (i.e., sg(t) = t/|t| if t = 0 and sg(0) = 0),
we have

∀v ∈ Rm, Dψε(x) · v =

m∑
i=1

ϕ′
ε(|xi|)sg(xi)vi,(3.11)

∀v, w ∈ Rm, w ·D2ψε(x) · v =

m∑
i=1

ϕ′′
ε (|xi|)viwi.(3.12)

Note that ϕ′′
ε is a decreasing function on R+ if 1 ≤ p ≤ 2, and it is an increasing

function if p ≥ 2. More precisely, we have the following:

if 1 ≤ p ≤ 2, ∃c > 0 ∀a > 0, ∀r ∈ [0, a], c ap−2 ≤ ϕ′′
ε (r) ≤ 2 εp−2,(3.13)

if 2 ≤ p, ∃c > 0 ∀a > 0, ∀r ∈ [0, a], 2 εp−2 ≤ ϕ′′
ε (r) ≤ c ap−2.(3.14)

This, in turn, implies the following property:

if 1 ≤ p ≤ 2

{
∀y ∈ Rm, c ‖y‖p−2

�∞ ‖y‖2
�2 ≤ y ·D2ψε(x) · y,

∀y, z ∈ Rm, |z ·D2ψε(x) · y| ≤ 2 εp−2 ‖z‖�2‖y‖�2 ,
(3.15)

and an obvious similar property holds if p ≥ 2.
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Now we introduce the regularized functional

Jε(vh) =

∫
Ω

ψε(Luh − f),(3.16)

and we define uε
h to be a solution to the following minimization problem:{

Find uε
h ∈ Eh s.t.

Jε(u
ε
h) = min

vh∈Eh

Jε(vh).(3.17)

It is clear that, owing to the regularization, Jε is differentiable (in the Fréchet sense),
and the first-order optimality condition for (3.17) is∫

Ω

Dψε(Lu
ε
h − f) · Lvh = 0 ∀vh ∈ Eh.

The algorithm that we propose in the next section consists in obtaining a solution to
(3.8) as a limit of a sequence (uε

h)ε>0 as ε → 0.
Now we give a series of lemmas clarifying the stability of uε

h with respect to the
data, the uniqueness of uε

h, the convergence of the sequence (uε
h)ε>0 as ε → 0, and,

finally, the convergence of the sequence (uε
h)ε>0,h>0 as both ε and h go to zero.

Lemma 3.1. Solutions to (3.17) satisfy the following stability estimate:

α‖uε
h‖E ≤ ‖f‖Lp(Ω)m + (mεp|Ω| + 2‖ψε(f)‖L1(Ω))

1
p .

Proof. Owing to the definition of ϕε, it is clear that for all g ∈ Lp(Ω)m,

1 ≤ i ≤ m,
1

2

∫
{|gi|≥ε}

|gi|p ≤
∫

Ω

ϕε(|gi|).

As a result,∫
Ω

|gi|p =

∫
{|gi|<ε}

|gi|p +

∫
{|gi|≥ε}

|gi|p ≤ εp|Ω| + 2

∫
Ω

ϕε(|gi|)

and ∫
Ω

‖g‖p�p ≤ mεp|Ω| + 2

∫
Ω

ψε(g).

Hence, ∫
Ω

‖Luε
h − f‖p�p ≤ mεp|Ω| + 2

∫
Ω

ψε(Lu
ε
h − f) ≤ mεp|Ω| + 2

∫
Ω

ψε(f).

The triangle inequality, together with (2.1), yields the result.
Lemma 3.2. If f ∈ L∞(Ω)m, there is a unique function uε

h minimizing Jε.
Proof. Let u1

h and u2
h be two functions in Eh. We have

DJε(u
1
h)(vh) −DJε(u

2
h)(vh) =

∫
Ω

[Dψε(Lu
1
h − f) −Dψε(Lu

2
h − f)] · Lvh

=

∫
Ω

L(u1
h − u2

h) ·
∫ 1

0

D2ψε(R(s))ds · Lvh,
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where R(s) = L(su1
h + (1− s)u2

h)− f . Now using vh = u1
h − u2

h as a test function and
making use of (3.15), we infer that

(DJε(u
1
h) −DJε(u

2
h))(u1

h − u2
h) ≥

∫
Ω

αε(u
1
h, u

2
h, f)‖L(u1

h − u2
h)‖2

�2 ,

where αε(u
1
h, u

2
h, f) = c inf0≤s≤1 min(‖R(s)‖p−2

�∞ ) if 1 ≤ p ≤ 2 and αε(u
1
h, u

2
h, f) =

2εp−2 if p ≥ 2.
If u1

h and u2
h both minimize Jε, then, owing to inverse inequalities, both of these

functions are bounded. Since f is also assumed to be bounded, we necessarily have
‖Lui

h − f‖L∞(Ω)m < +∞, i = 1, 2; that is to say, ess infΩ αε(u
1
h, u

2
h, f) > 0 and

0 ≥ ess inf
Ω

αε(u
1
h, u

2
h, f)

∫
Ω

‖L(u1
h − u2

h)‖2
�2 ,

which yields u1
h = u2

h since L is injective.
Since Eh is finite-dimensional (hence locally compact), a first consequence of

Lemma 3.1 is that, up to a subsequence, (uε
h)ε>0 converges to some u0

h in Eh.
Lemma 3.3. Every limit u0

h of (uε
h)ε>0, up to a subsequence, is a solution to the

unregularized minimization problem (3.8).
Proof. First, let us observe that

∀p ≥ 1, ∀x ∈ R, |ϕε(|x|) − |x|p| ≤ (2 + p)2p ε (|x|p−1 + εp−1).

As a result, for all x ∈ E, we have

|Jε(x) − J (x)| ≤ (2 + p)2p ε

∫
Ω

(
m∑
i=1

|Lix− fi|p−1 + εp−1

)

≤ (2 + p)2p ε (mεp−1|Ω| + m
1
p |Ω| 1pJ (x)

p−1
p ).

(3.18)

Furthermore, for all x1 and x2 in E, we have

|J (x1)
1
p − J (x2)

1
p | = |‖Lx1 − f‖F − ‖Lx2 − f‖F | ≤ ‖L‖ ‖x1 − x2‖E .

Combining these two results, we infer that if xε → x0 in E, then Jε(x
ε) → J (x0).

Then we have

J (u0
h) = lim

ε→0
Jε(u

ε
h) = lim

ε→0
min

vh∈Eh

Jε(vh) = min
vh∈Eh

J (vh),

which means that u0
h minimizes J in Eh.

Lemma 3.4. Every solution to problem (3.17) is such that

‖u− uε
h‖E �

(
ε c(‖f‖F ) + min

vh∈Eh

‖u− vh‖pE
) 1

p

,

where c(·) is a continuous function.
Proof. Owing to Lemma 3.1 and (3.18), we infer that

0 ≤ J (uε
h) − J (uh) ≤ J (uε

h) − Jε(u
ε
h) + Jε(u

ε
h) − Jε(uh)

+Jε(uh) − J (uh)
≤ J (uε

h) − Jε(u
ε
h) + Jε(uh) − J (uh)

� ε
(
εp−1 + J (uε

h)
p−1
p + J (uh)

p−1
p
)

� ε c(‖f‖F ).
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Hence,

‖u− uε
h‖

p
E � ‖f − Luε

h‖
p
F = J (uε

h) − J (uh) + J (uh)
� ε c(‖f‖F ) + min

vh∈Eh

‖u− vh‖pE .

The proof is complete.
Remark 3.2. Lemma 3.4 guarantees that if ε1/p is smaller than the interpolation

error, then uε
h is as good an approximation of u as uh. Note also that the smaller the

p the smaller the error induced by regularization, and regularization is needed only if
1 ≤ p < 2.

3.6. A simple algorithm for solving (3.8). We now present a simple algo-
rithm for solving (3.8). The main idea is to set a sequence of regularization parameters
(εk)k≥0 tending to zero (or some numerically acceptable threshold) as k grows and
then, for each parameter εk, to find a reasonable approximation of the minimizer of
Jε using Newton’s algorithm and starting from the approximate minimizer evaluated
at step k − 1. More precisely, the algorithm we propose is as follows:
Step 1: Initialize ε0 (say, ε0 ∼ h) and compute some initial guess u0

h (use a crude
L2(Ω)-stabilized technique; for instance, add a Laplace perturbation to the
equation and evaluate the Galerkin solution, or evaluate the least-squares
solution).

Step 2: Iterate on index k, starting from k = 0.
Step 3k: Set uk,0

h = uk
h.

Step 4k: Iterate on index l, starting from l = 0.
Step 5k,l: Evaluate the gradient and the Hessian of Jεk(uk,l

h ) as follows:

DJεk(uk,l
h )(vh) =

∫
Ω

Dψεk(Luk,l
h − f) · Lvh,(3.19)

D2Jεk(uk,l
h )(vh, wh) =

∫
Ω

Lwh ·D2ψεk(Luk,l
h − f) · Lvh.(3.20)

Step 6k,l: Deduce a descent direction, dh, by solving the following prob-
lem: {

Find dh ∈ Xh s.t.

D2Jεk(uk,l
h )(vh, dh) = DJεk(uk,l

h )(vh) ∀vh ∈ Xh.
(3.21)

Note that D2ψεk > 0; hence, in addition to being symmetric, the
bilinear form D2Jεk(uk,l

h )(vh, wh) is always positive definite; that is,
(3.21) has always a unique solution.

Step 7k,l: Make a line search of the minimum of J along the direction

dh. Call the corresponding solution uk,l+1
h .

Step 8k,l: If ‖uk,l+1
h − uk,l

h ‖pE is smaller than εk, set uk+1
h = uk,l+1

h and
exit the l loop; otherwise continue iterations on l.

Step 9k: If εk is smaller than some fixed tolerance, exit the k loop; otherwise
divide εk by some fixed constant, say 3

2 , call the result εk+1, and continue
iterations on k.

Step 10: Stop.
Remark 3.3.

(i) Note that at Step 7 the line search minimizes J ; hence, the algorithm always
makes J decrease.
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(ii) Note that in the above algorithm ε is not a tunable coefficient; i.e., this co-
efficient cannot be compared to any stabilizing parameter usually introduced
by L2-based stabilizing techniques (e.g., GaLS, residual free bubbles, subgrid
viscosity, etc.). The sequence (εk)k≥0 is meant to accelerate the convergence
process, and it goes to zero as the number of iterations grows.

(iii) Note that the cost of one loop of the algorithm above is that of evaluating the
Hessian and solving for the descent direction; however, (3.21) does not need
to be solved very accurately. The computational cost per loop is identical
to that of an approximate Galerkin solve. Hence, the total cost of the algo-
rithm is that of an approximate Galerkin solve times the number of loops. In
the examples reported below, the number of loops required to reach a rea-
sonable convergence criterion was between 10 to 25 when using u0

h = 0. It
is very likely that this crude algorithm is not optimal, and further research
is needed to improve on this aspect of the problem. One can imagine, for
instance, embedding the above algorithm within a multigrid strategy and/or
some adaptive refinement strategy.

(iv) Using a stabilized L2-based technique to compute u0
h significantly shortens

the number of iterations in the above algorithm. In this context minimizing
the residual in L1 could be viewed as postprocessing for the L2-based method.

(v) The above regularization-based iterative algorithm has some similarities with
the so-called iteratively reweighted least-squares method of Jiang [24, Chap.
9].

(vi) When the operator L is nonlinear, the above algorithm still holds, provided

formulas (3.19) and (3.20) defining the gradient and the Hessian of Jεk(uk,l
h )

are modified accordingly. In this context, solving the problem in any Lp(Ω)
does not cost more than solving the problem in the standard L2(Ω) setting.

4. Numerical results. We report in this section on results of numerical tests
meant to assess the theoretical a priori error estimates derived above and to illustrate
the performance of the method when dealing with nonsmooth data and nonlinear
problems. Unless stated explicitly otherwise, all the numerical tests reported herein
have been performed in L1(Ω).

4.1. Convergence tests.

4.1.1. A transport equation. We consider the two-dimensional (2D) domain
Ω = ]0, 1[2 and the transport equation

∂xu = f, u|x=0 = u0,(4.1)

with smooth data

f(x, y) = 2π cos(2π(x + y)), u0(y) = sin(2πy),

s.t. the exact solution is

u = sin(2π(x + y)).

We approximate the solution using piecewise linear and piecewise quadratic triangular
elements on unstructured Delaunay meshes. We compute the approximate solution
of (4.1) in L1(Ω). For the P1 solution we use meshes s.t. 1

10 ≤ h ≤ 1
100 , and for the

P2 solution we take h in the range 1
5 ≤ h ≤ 1

60 . All the integrals are evaluated by
using the 3 Gauss points quadrature rule for the P1 solution and the 7 Gauss points
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Fig. 1. Convergence tests for P1 approximation. Left: Error in the L1-norm and L2-norm vs.
the meshsize. Right: Error in the L1(Ω)-graph norm and H1-norm vs. the meshsize.
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Fig. 2. Convergence tests for P2 approximation. Left: Error in the L1-norm and L2-norm vs.
the meshsize. Right: Error in the L1(Ω)-graph norm and H1-norm vs. the meshsize.

quadrature rule for the P2 solution. We evaluate the errors in the L1-norm, the L2-
norm, the L1(Ω)-graph norm, and the H1-norm. The results for the P1 approximation
are displayed in Figure 1, and those for the P2 approximation are shown in Figure 2.

We note that the a priori error estimate (2.12) in the L1(Ω)-graph norm is fully
confirmed: the slope is of order one with P1 finite elements and of order two with
P2 finite elements. The error in the H1-norm is of order 1

2 for the P1 approximation
and of order 1.7 for the P2 approximation. The fact that the convergence orders
in the L1(Ω)-graph norm and the H1-norm are different confirms that the method
performs as expected and that it does not introduce excessive artificial cross-wind
diffusion. The convergence rates of the error in the L1-norm and the L2(Ω)-norm
are slightly better than first-order in the P1 case and better than second-order in the
P2 case. Note, however, that in both cases the rates are suboptimal. This result
is not surprising since transport equations have no regularizing effects; that is, the
Nitsche–Aubin duality argument that holds for elliptic equations does not hold here.

4.2. An elliptic operator. We now test the method on the Laplace operator.
We use again Ω = ]0, 1[2. We solve

−∇2p = f, p|∂Ω = p0,
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Fig. 3. Convergence tests for P1 approximation of the Laplace operator. Left: Error in the
L1-norm and L2-norm vs. the meshsize. Right: Error in the L1(Ω)-graph norm and H1-norm vs.
the meshsize.

with the data being s.t. p = x + 2y + sin(2πx) cos(2πy) is the exact solution.
The problem is rewritten in its first-order form (3.4) and solved in this form. We

approximate the solution in L1(Ω) using P1 finite elements on unstructured Delaunay
meshes with 1

10 ≤ h ≤ 1
100 . For each mesh we measure the error in the L1(Ω)-norm,

the L2(Ω)-norm, the W 1,1(Ω)-norm, and the H1(Ω)-norm. The results are reported
in Figure 3. We observe that the rate of convergence in the W 1,1(Ω)-norm and in
the H1(Ω)-norm are of first order; that is, they are optimal. Note that the error in
the W 1,1(Ω)-norm is almost eight times lower than that in the H1(Ω)-norm. For the
L1(Ω)-norm there is not a clear rate, but we observe that the numerical results are
bracketed by two lines of slope 1.65 and 1.85. Hence, the convergence is not second-
order, but it is close to second-order. A similar conclusion holds for the convergence
rate in the L2(Ω)-norm.

4.3. Transport equation with shock-like solutions. To illustrate the per-
formance of the method when dealing with nonsmooth data, we consider again the
2D rectangular domain Ω = ]0, 1[2, and we solve the transport equation

∂xu = f, u|x=0 = u0,(4.2)

with the two source terms

f1(x, y) = 1
2γ

[
1 − tanh2

(
x−0.5

γ

)]
,

f2(x, y) = 1
2γ

[
1 − tanh2

(x−0.5(y+0.5)
γ

)]
,

for which the respective solutions are

u1(x, y) = 1
2

[
1 + tanh

(
x−0.5

γ

)]
,

u2(x, y) = 1
2

[
1 + tanh

(x−0.5(y+0.5)
γ

)]
,

where γ > 0 is a small parameter. The source terms f1 and f2 are approximations
of Dirac measures supported by the segments x = 1

2 and x − 1
2 (y − 1

2 ), respectively.
These data mimic shock-like solutions.

To emphasize the capability of the method to perform well on unrefined and
unstructured meshes, we show in Figure 4 the approximate solutions calculated on a
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Fig. 4. Piecewise linear L1 approximations for test cases (4.2). Left: source term f1; right:
source term f2.

Delaunay mesh composed of 932 triangles of meshsize h = 1
20 . The parameter γ in

the definition of the source terms is chosen to be γ = h to guarantee that the inexact
numerical integrations of the residuals are accurate enough.

Note that the solutions do not exhibit spurious over- or undershootings.

4.4. Transport equation with shear-layer-like solutions. In this section,
we compare the performance of the method with that of the least-squares method on
a transport equation with discontinuous boundary data.

4.4.1. 1D transport. We consider the 2D rectangular domain

Ω = ]0.2, 0.8[×]0, 2[,

and we solve the following transport equation:

∂xu = 0, u|x=0 =

{
1 if y ≥ 0.5,
0 otherwise.

(4.3)

The exact solution is

u(x, y) =

{
1 if y ≥ 0.5,
0 otherwise.

We perform the calculations on a Delaunay mesh with h = 1
40 . Due to the interpola-

tion process, the boundary data is regularized for 0.475 ≤ y ≤ 0.525.
We evaluate the least-squares solution (i.e., the L2(Ω) approximation) and the

L1(Ω) approximation. The results are shown in Figure 5. The L1(Ω) solution is shown
at the top of the figure, and the L2(Ω) one is shown at the bottom. For each solution
we show contour lines in the left panels of the figure. Note that for both solutions
there is some smearing in the transverse direction at the onset of the flow. This is
due to the fact that the mesh is not aligned with the flow and the boundary data has
been interpolated. In the right panels we show the projection of the graph of each
solution onto the plane x = 0. It is clear that the least-squares solution is significantly
more smeared than the L1(Ω) one. The least-squares solution also exhibits over- and
undershootings; i.e., it does not satisfy the maximum principle.

4.4.2. Curved transport. We consider the half disk

Ω = {(x, y);
√
x2 + y2 < 1; y > 0},

and let us set ∂Ω− = {−1 < x < 0; y = 0}. We want to solve the following transport
problem:

v · ∇u = 0, u|∂Ω− =

{
1 if − 1 < x < −0.74,
0 if − 0.74 < x < 0,

(4.4)
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Fig. 5. Advection equation (4.3). Top: L1(Ω) solution and mesh; bottom: L2(Ω) solution.
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Fig. 6. Advection equation (4.4). Left: L1(Ω) solution with mesh; right: L2(Ω) solution.

with the curved flow field v(x,y) = (sin θ,− cos θ), where θ is the polar angle; i.e.,
θ = arctan(y/x) ∈ [0, π[ with the convention arctan(±∞) = π/2. The exact solution
is

u(x, y) =

{
1 if

√
x2 + y2 > 0.74,

0 otherwise.

We perform the calculations on a Delaunay mesh with h = 1
40 . Due to the interpola-

tion process, the boundary condition is regularized for −0.765 ≤ x ≤ −0.715.
Contour lines of the L1(Ω) and L2(Ω) solutions are shown in Figure 6. We show

about 13 contour lines for each solution. The L1(Ω) solution is shown in the left panel
of the figure, and the L2(Ω) one is shown in the right panel. For both solutions there is
some smearing in the transverse direction at the onset of the flow due to misalignment
of the flow with the mesh and the interpolation of the data. It is clear, once again,
that the least-squares solution is significantly more smeared than the L1(Ω) solution
and exhibits over- and undershootings.

Remark 4.1. The two test cases considered above show that for a given mesh the
L1(Ω) solution has better qualitative properties than the standard L2(Ω) solution. In
particular, discontinuities are less smeared by the L1 approximation technique. We
observe also that the L1(Ω) solution satisfies the maximum principle. This numerical
observation has yet to be fully explained mathematically.
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Fig. 7. Advection equation (4.5), Case 1, ν = 0.02. Left: P1 Lagrange interpolate of the exact
solution; center, L1(Ω) solution; right, L2(Ω) solution.

Remark 4.2. Of course, if the meshes are adapted to the flow, results much
sharper than those shown here can be easily obtained. We do not show these results
here, for our objective in the present paper is rather to compare the performance of
the L1(Ω) and L2(Ω) methods on arbitrary meshes than to show that each method
can produce sharp results on adapted meshes.

4.5. Advection-diffusion equation. We conclude this series of tests on linear
equations by solving an advection-diffusion equation in the vanishing viscosity regime.

For the sake of simplicity, we consider again the rectangular domain Ω = ]0, 1[2,
and we denote

∂ΩD = {(x, y) ∈ ∂Ω; x = 0 or x = 1},
∂ΩN = {(x, y) ∈ ∂Ω; y = 0 or y = 1}.

We want to solve ⎧⎨
⎩
αp + β · ∇p +

√
ν∇·u = f ,√

ν∇p + u = 0,
p|∂ΩD

= pD, u · n|∂ΩN
= 0.

(4.5)

We set β = (1, 0) s.t. the exact solution can be evaluated exactly.

4.5.1. Case 1. α �= 0. We set

α = 1, f = 1, pD = 0.(4.6)

The exact solution is

p(x, y) = 1
α + µ+eλ

+x + µ−eλ
−x,

λ±= −1±
√

1+4αν
−2ν , µ+= − 1

α
eλ

−
−1

eλ−−eλ+ , µ−= − 1
α

eλ
+
−1

eλ+−eλ− .
(4.7)

We choose ν = 0.02. We compute the L1(Ω) and the least-squares approximations
on a coarse grid with h = 1

10 . To the best of our knowledge, no finite element
method is capable of producing a reasonable approximation to this problem with these
parameters (|β|h/ν = 5) without resorting to some stabilization and/or nonlinear
limiting technique. The results are shown in Figure 7. The P1 Lagrange interpolate
of the exact solution is shown in the leftmost panel of the figure, the L1 solution is in
the center panel, and the least-squares solution is in the rightmost panel.

It is clear that the least-squares solution is far from the exact solution, whereas
the L1 one is a good approximation, considering the very low number of degrees of
freedom used.
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Fig. 8. Advection equation (4.5) with ν = 0.00125, Case 2. Left: side view of the graph of the
approximate solution. Right: projection onto plane y = 0 of the graph of the approximate solution.

4.5.2. Case 2. Now we set α = 0. We choose the following data:

f = 0, pD =

{
0 if x = 0,
1 if x = 1.

(4.8)

The exact solution is

p(x, y) =
ex/ν − 1

e1/ν − 1
.(4.9)

This case is frequently used in the literature to test the capability of numerical
methods to solve advection-diffusion equations with dominant advection.

We set ν = 0.00125, and we compute the L1(Ω) solution on a grid of meshsize
h = 1

40 . The result is shown in Figure 8.
It is clear that, within the capability of the mesh, the boundary layer is well-

captured and the solution is not plagued by spurious oscillations.

4.6. Viscosity solutions of first-order PDEs. A striking property of the L1

approximation technique is that it seemingly can select viscosity solutions of first-
order PDEs (i.e., in the sense of Bardos, Leroux, and Nédélec [5] and Kružkov [27]).

4.6.1. Notion of viscosity solution. To illustrate this phenomenon, let Ω be
a bounded domain of Rd with a smooth boundary. Let α > 0, and let β be a vector
field s.t. βi ∈ C1(Ω), 1 ≤ i ≤ d. Let u0 be a smooth function on ∂Ω, say u0 ∈ C2(∂Ω),
and let f ∈ W 1,1(Ω). Following Bardos, Leroux, and Nédélec, [5], we say that u is a
viscosity solution of

αu + ∇ · (βu) = f, u|∂Ω = u0,(4.10)

if u ∈ BV(Ω), u solves the PDE, and u satisfies the boundary condition in the following
sense: ∫

∂Ω

(β · n)(u − k)(sg(u − k) − sg(u0 − k)) ≥ 0 ∀k ∈ R,(4.11)

where sg(t) is the sign of t if t = 0 and sg(0) = 0. In the present linear case, the
boundary condition amounts to enforcing u = u0 on ∂Ω− = {x ∈ ∂Ω |x · n < 0}.
The interest of (4.11) is that it generalizes easily to nonlinear equations, whereas
the notion of inflow and outflow boundary condition does not, since for nonlinear
problems the inflow or outflow status of the boundary may depend on the solution
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itself. For instance, if the linear term βu is replaced by F (u,x), then the boundary
condition u|∂Ω = u0 has to be understood in the sense∫

∂Ω

(F (u,x) − F(k,x)) · n(sg(u − k) − sg(u0 − k)) ≥ 0 ∀k ∈ R.(4.12)

Using arguments similar to those in [5] and [4], it is possible to prove that (4.10)
has a unique viscosity solution, provided α is large enough. The bulk of the argument
consists of proving that the solution to the following problem,

αuε + ∇ · (βuε) − ε∇2uε = f, uε|∂Ω = u0,(4.13)

converges in BV(Ω) and the limit is the so-called viscosity solution; i.e., the limit
satisfies the PDE in (4.10) and (4.11).

Despite the appearance, the problem (4.10) is not purely formal. It is typically
this type of problem that arises when one tries to approximate (4.13) on meshes which
are not refined enough. More precisely, when ε/h2 � 1/h the second-order term in
(4.13) is completely dominated by the first-order one, and solving (4.13) numerically
amounts to trying to solve (4.10), where the boundary condition is understood in the
classical sense instead of (4.11).

Once this point is understood, it becomes clear that the least-squares technique
cannot work properly on the advection-diffusion equation (4.13) if the mesh is not
refined enough.

Proposition 4.1. The H1-conformal approximate least-squares solution to the
linear problem (4.13) (written in mixed form) may not converge to the viscosity solu-
tion as h → 0.

Proof. As we want to build a counterexample, let us restrict ourselves to the
1D viewpoint, and let us take Ω = ]0, 1[ , β = 1, u0 = 0, α = 1, and f = 1. Let
Eh ⊂ H1

0 (Ω) be a finite-dimensional finite element space. Thanks to crude a priori
estimates in L2(Ω) and standard inverse inequalities, it is clear that the least-squares
approximation to (4.15) converges to the solution of the following problem as ε → 0:∫ 1

0

(uh + u′
h)(vh + v′h) =

∫ 1

0

(vh + v′h) ∀vh ∈ Eh.

Since test functions in Eh satisfy vh(0) = vh(1) = 0, we obtain∫ 1

0

(uh + u′
h)(vh + v′h) =

∫ 1

0

vh ∀vh ∈ Eh.

Then it is clear that, when h → 0, the solution to the above problem converges in
H1

0 (]0, 1[) to the solution of the following PDE:

w − w′′ = 1, w(0) = w(1) = 0,

which is obviously different from the viscosity solution which solves

u + u′ = 1, u(0) = 0.

This completes the proof.
This example shows that for a given mesh the L2-based least-squares approxi-

mation technique does not select the right limit of (4.15) as ε → 0. The situation is
quite different in L1(Ω). For reasons not yet clear, numerical tests, reported in the
next section, show that the solution that minimizes the L1 distance is a reasonable
approximation of the viscosity solution.
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Fig. 9. Viscosity solution to (4.14). Left: P1 Lagrange interpolate of the exact solution; center,
L1(Ω) solution; right, L2(Ω) solution.

4.6.2. Numerical experiments. let us consider the 2D rectangular domain
Ω = ]0, 1[2 with ∂ΩD = {x = 0} ∪ {x = 1} and ∂ΩN = {y = 0} ∪ {y = 1}. We want
to solve the following scalar problem:

αu + ∂xu = f, u|∂ΩD
= u0.(4.14)

Of course, this problem is not well-posed in the standard sense since the outflow
boundary condition is overspecified, but this problem is meaningful in the viscosity
sense as defined above. Let Eh be a H1-conformal finite element space s.t. for all vh
in Eh, vh|∂ΩD

= 0. It is clear that approximating the regularized problem

αuε + ∂xuε − ε∇2uε = f, uε|∂ΩD
= u0, ∂yuε|∂ΩN

= 0,(4.15)

and taking the limit ε → 0, h being fixed, is equivalent to approximating (4.14) in Eh

(recall that in Eh the Dirichlet boundary condition is enforced in the standard sense).
Let us set

α = 1, f = 1, u0 = 0.(4.16)

We solve (4.14) in L1(Ω) and in L2(Ω), respectively, using continuous P1 finite ele-
ments and (3.8). To emphasize the capabilities of the L1 approximation technique, we
restrict ourselves to a very coarse mesh, h = 1/10. The results are shown in Figure 9.

In the left panel we show the P1 Lagrange interpolate of the viscosity solution,
in the center panel we show the L1 solution, and in the right panel we show the
least-squares solution. Considering the mesh used, the L1(Ω) approximation is a
reasonable approximation, whereas the least-squares solution is completely wrong
(thus confirming Proposition 4.1). Convergence tests, not reported here, show that
the L1(Ω) approximate solution converges in the L1(Ω)-norm to the viscosity solution
as h → 0.

Contrary to what it seems, the two horn-like spikes observable on the graph of
the L1 solution are not overshootings. These are perspective effects induced by the
fact that the two corresponding P1-nodes are not aligned with the others. This is
made clear by looking at the xz-projection of the graph of the L1 solution shown in
Figure 10.

Given that the least-squares method, together with its many variants, is a central
part for the stabilization of the Galerkin technique (see, e.g., [16, 25, 26]), the above
example gives new reasons why the Galerkin least-squares method cannot generally
cope properly with shocks and boundary layers without the help of shock-capturing
terms [26, 22].
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Fig. 10. Projection in the xz-plane of the graph of the L1 solutions in Figure 9.

4.7. The Burgers equation. To finish this series of tests we propose to solve
the Burgers-like equation

∇·
((

β +
u

2

x − x0

‖x − x0‖2�2

)
u

)
= 0, u|∂Ω1 = 1, u|∂Ω0 = 0,(4.17)

in the following 2D domain:

Ω = ]0, 1[2 \{‖x0 − x‖�2 ≤ 0.2},

where ∂Ω1 = {‖x0 − x‖�2 = 0.2}, ∂Ω0 = {x = 0}, x0 = (0.5,0.5), and β = (v0, 0)
with v0 ≥ 0. This form of the Burgers equation retains the simplicity of its 1D
counterpart and allows for more realistic 2D numerical tests.

We select an entropy solution to this problem by taking the limit as t → +∞ of
the solution to the time-dependent version of (4.17), using as initial data the solution
to the following problem:

∇2u0 = 0, u0|∂Ω1
= 1, u0|∂Ω0

= 0, ∂nu0|∂ΩN
= 0,

where ∂ΩN is the complement of ∂Ω0 ∪ ∂Ω1.
The L1 approximation is computed iteratively by solving the time-dependent

problem, using the implicit Euler time-stepping. We test two configurations, v0 = 6
and v0 = 4/3, henceforth referred to as case 1 and case 2, respectively. To assess
the accuracy of the method and its sensitivity to mesh refinement, we first do the
computation on a uniform grid, h = 1/40; then we redo it on a somewhat adapted
grid with 1/10 ≤ h ≤ 1/100.

The results for case 1 are shown in Figure 11. We show the contour lines of the
solution. Essentially, the exact solution consists of two regions where u is either equal
to 1 or equal to 0, and these two regions are separated by a shock. Note that there is no
shock in the upstream region and the u = 0 solution reaches the cylinder. This means
that the boundary condition u|∂Ω1 = 1 is satisfied in the entropy sense as defined in
(4.12). We observe that the numerical solution satisfies the maximum principle and
the contour lines are concentrated in the shock region. In this case the shock spreads
over 2 to 3 elements; the reason for this is that the shock is almost aligned with
the flow. This phenomenon is comparable to the smearing observed in the transport
problem described in section 4.4. Smearing of oblique shocks is a common feature of
techniques dealing with shocks. Note that the position of the shock does not change
significantly as the mesh is refined, thus demonstrating that the coarse uniform mesh
predicts quite well the position of the shock in question.

The contour lines of the numerical solution to case 2 are shown in Figure 12. Once
more, the numerical solution is not plagued by spurious over- or undershootings. The
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Fig. 11. The Burgers equation with v0 = 6. Contour lines of the solution. Left: uniform mesh
h = 1/40; right: nonuniform mesh 1/10 ≤ h ≤ 1/100.
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Fig. 12. The Burgers equation with v0 = 4/3. Contour lines of the solution. Left: uniform
mesh h = 1/40; right: nonuniform mesh 1/10 ≤ h ≤ 1/100.

shock is almost perpendicular to the incoming flow; as a result, there is no smearing.
The shock is a.e. contained within one element only.

The two above examples show that the L1 technique is capable of selecting the
entropy solution of Burgers-like equations. Moreover, the L1 solution seems to satisfy
a maximum principle. These two numerical observations are still to be understood
and possibly proved mathematically.

5. Concluding remarks. One of the objectives driving the present work is
to show that for solving first-order PDEs supplemented with nonsmooth data the
ongoing debate pitting methods based on continuous interpolation against those based
on discontinuous ones (e.g., H1-conformal Galerkin vs. discontinuous Galerkin) is
possibly pointless, insofar as the analysis is usually restricted to the L2(Ω) setting.
In the present paper, we have tried to promote the idea that working in a functional
setting that provides for the right stability properties is as important as debating on
the nature of the approximation (interpolation) space. Once the required stability
property is guaranteed by the functional setting, the only requirement set for the
discrete space is that it possesses good interpolation properties. As an illustration of
this point of view, we have shown that, when working in L1(Ω), the often despised
continuous P1 finite element is capable of accurately approximating shocks, shear-
layers, and boundary layers.

For reasons not yet completely clear, it seems that the L1(Ω) approximation
technique is capable of selecting viscosity solutions of first-order PDEs [5, 27] without
resorting to any artificial artifact and/or tuning parameter, though this conjecture
has yet to be substantiated mathematically.
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All that has been said in this paper can be extended to spaces that are more
exotic than the Lp’s. For instance, we could consider Besov spaces or Radon measures,
provided the corresponding norms can be computed efficiently in the discrete space
Eh. While these spaces may provide better interpolation or approximation properties,
they would require the use of wavelet bases or other hierarchical approximation spaces
(for researches going in this direction, we refer the reader to, e.g., [7, 8]).

The generalization of the present work to evolution equations and conservation
laws is under investigation and will be reported in a forthcoming paper.
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Appl. (Berlin) 36, Springer-Verlag, Paris, 2002.

[19] K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math.,
11 (1958), pp. 333–418.

[20] J.-L. Guermond, Stabilisation par viscosité de sous-maille pour l’approximation de Galerkin
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