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J.M. LANDSBERG

1. Chapter 1

• p7, displayed equation for A, third term, change a21e
2⊗f1 to a21e

1⊗f2
• p7, Exercise1.2.1.1 delete XS.
• p32, §2.3.1, line 4, W ∗ → V change to W ∗ → V ∗.
• p36, indices in (2.4.3) should be: 3rd, 4th terms c21 → c12, 5th, 6th, c

1
2 → c21.

2. Chapter 2

• p46, Exercise 2.6.1.2 (1), should say f : V → W with dimW ≥ dimV , and
(3) should clarify f : V → V .

• p49, last displayed equation, first line, missing ⊗ two times.
• p51, Eqn. (2.7.1) denominator 2nn! change to 2mm! and 2n change to 2m.

• p53, Exercise 2.8.1 (1), add, “in particular, show dimS21V = n(n2−1)
3 ”.

• p53, Exercise 2.8.1 (8) change “so that we” to “and that we”. Also add
hint that the exactness is a special case of the Poincare Lemma.

• p65, Fig. 2.11.14: of the six realizations, only three are distinct.

3. Chapter 3

• p70,Thm. 3.1.4.3 reference [220] should be there and in (2), v3 − 1 should
be v3.

• p82, lines 1,3: A∧2
T should be T∧

A (5 times).
• p82, §3.8.1.4: In Thm, It remains to show that the equations are not iden-
tically zero. This was shown in [4].

• p85, It is now known that R(Mm,m,m) ≥ 2m2 −m, see [7].
• p88, Thms. 3.9.3.1, 3.9.3.1, add “and Strassen’s degree 5 equations.”
• p89, first displayed matrix, indices in (2, 3) slots of blocks 1,3,4,6 are incor-
rect. They should respectively be (122), (122), (012), (012).

4. Chapter 4

• p98, add sentence at the end of 4.1: If these questions cause no difficulty,
then skep to Chapter 5.

• p100, add the example in the plane of {x2 = 0}. In any degree d we do not
have the equation xyd−1 = 0 which is in the ideal of {x = 0}, showing that
set theoretic equations are not the same as scheme theoretic equations.

• p101 line above 4.2.3, change r to r + 1
1



2 J.M. LANDSBERG

5. Chapter 5

• p122, 5.3.1, change “number of ways” to “number of parameters worth
that”

• p127, Thm 5.5.1.1(4) ab− a− b− 2 change to ab− a− b+ 2 two times.

6. Chapter 6

• p140, first bullet: “the number of elements in its conjugacy class” change to
“the dimension of the module”.

• p140, (6.2.3) +e(132) change to − e(132).
• p147, Thm 6.4.5.1: This is really only half the statement of the Double
Commutant Thm., even in this special case, see e.g. [9] for the full state-
ment.

• p140, Exercise 6.2.1(1) vρ 1 2 3 = ρ 1 2 3 change to vρ 1 2 3 = λρ 1 2 3 for
some λ ∈ C

∗, and similarly for the rest of the exercises.
• p153, §6.7.1, displayed eqn.,

∑

change to
⊕

• p154, Exercise 6.7.1.1: cνπ,µ change to cπν,µ, also Hint: Say |π| = k, expand

(A⊗B)⊗k, and reshuffle to have all A’s first, then all B’s, and consider the
subgroup of S2k that preserves the shuffling.

• Exercise 6.7.3(2)
∑

change to
⊕

• p160, Exercise 6.8.1.3 (x1 ∧ · · · ∧ xp)
p change to xp

1 · · ·xp
k

• p161, Prop. 6.8.2.1/Exercise 6.8.2.2. What is proved is that a nonzero
weight vector is a highest weight vector iff n.v = 0. To do the exercise, need
the fact that B = exp(b).

• p165, Exercise 6.9.2(2). To make the exercise easier, first do the case of
the projection GL(V )/B to a next-to minimal parabolic (show the fiber is
a P1).

• p168, Prop. 6.10.4.1, remove the S2dA terms from the ideal.
• p170, Exercise 6.10.6.6 is difficult, as the natural realizations of the modules
will not lie in Sd(A⊗B), one must show their projections into Sd(A⊗B)
are nonzero.

7. Chapter 7

• p180, Πai −
∑

ai − n+ 1 change to Πai −
∑

ai + n− 1 in Thm 7.3.1.4(1)
and above statement of Thm.

• p199, Displayed equation in Remark 7.7.1.2, second entry of second line
should read Λ5B⊗Λ5(A⊗C).

• p213, §8.2.5, a better modern reference is [2]

8. Chapter 8

• p220, Prop. 8.6.1.2 does not appear in [39], and in fact dates back to
Hadamard.

• p220, Proof of Prop. 8.6.1.2 last line ℓδ1 · · · ℓδd should be (ℓ1)δ · · · (ℓd)δ.
• p224-5, roles of V and V ∗ are accidently switched several times.

9. Chapter 9

• p235/6, Prop. 9.3.1 is not correct as stated because R(xyz) = 4, not 3 as
stated in proof p 236.
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• p236, §9.3.2, the symmetric border rank lower bounds via flattenings are

easily seen to be
(

n
⌊n/2⌋

)2
in both cases, as the image of flattenings are the

appropriate sized minors (resp. sub-permanents) for the determinant (resp.
permanent).

10. Chapter 10

• p260, §10.5. A better, and older reference for this section is [1].
• p266, Thm. 10.9.2.1, S3W change to SdW .
• p267, In equation (10.10.1) the first term is not needed
• p269, displayed eqn. (4) a3⊗b1⊗c1 + a1⊗b2⊗c2 + a1⊗b1⊗c2 + a2⊗b3⊗c1 +
a2⊗b1⊗c3 change to a3⊗b1⊗c1 + a1⊗b2⊗c1 + a1⊗b1⊗c1 + a2⊗b3⊗c1 +
a2⊗b1⊗c3

• p281, reference to [3] is old edition

11. Chapter 11

• p275, the current (as of 6/13) world record for the upper bound of the
exponent of matrix multiplication is in [10].

• p276, the current (as of 6/13) world record for the lower bound of the border
rank (resp. rank) of matrix multiplication isR(Mn,n,n) ≥ 2n2−n in [7]. For

rank, the current (as of 6/13) world record is R(Mn,n,n) ≥ 3n2−2
√
2n3/2−

3n [8] following work in [5] which showed R(Mn,n,n) ≥ 3n2 − 4n
3

2 + 3n.

• p280, the targets of teh maps M2,M3 should respectively be





0 ∗ 0
∗ ∗ ∗
0 ∗ 0



,

and





0 0 ∗
0 0 ∗
∗ ∗ ∗



.

• p276, Thm. 11.0.2.12, note also that 23 ≥ R(M3,3,3), due to Laderman.
• p277, Remark: there are three families of lines on Seg(P1 × P1 × P1), lines
from distinct families intersect. This gives more insight into the algorithm.

• p277, first displayed equation is for operator with a11 = 0, second is for
operator with a22 = 0, in third, the first c12 should be c21.

• p279, Remark: since T1 + T2 : A∗ × B∗ → C is surjective, in fact one has
R(T1 + T2) = a1b1 + 1.

• p280, second and third displayed equations are missing ⊗ before many of
the γ’s.

• p281, Remark: Prop. 11.3.1.1 is a special case of the algebraic Peter-Weyl
Thm 13.6.3.

• p281, §11.3.2, last line of paragraph, S1
−1S3 change to S3

−1S1.
• p284, first line, reference is incorrect, it should be [6]

12. Chapter 12

13. Chapter 13

• p322 proof of 13.4.1.1: F2 should be {0, 1}.
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14. Chapter 14

15. Chapter 15

16. Chapter 16

• p389, second line of proof, ⊆ change to =. First displayed eqn. of proof,
add summation over i in first term,
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