TENSORS: GEOMETRY AND APPLICATIONS CORRECTIONS AND ADDITIONS, LAST UPDATED 7/13

J.M. LANDSBERG

1. Chapter 1

- p7, displayed equation for A, third term, change $a_{1}^{2} e^{2} \otimes f_{1}$ to $a_{1}^{2} e^{1} \otimes f_{2}$
- p7, Exercise1.2.1.1 delete $X S$.
- p32, $\S 2.3 .1$, line $4, W^{*} \rightarrow V$ change to $W^{*} \rightarrow V^{*}$.
- p36, indices in (2.4.3) should be: 3rd, 4 th terms $c_{1}^{2} \rightarrow c_{2}^{1}$, 5th, 6 th, $c_{2}^{1} \rightarrow c_{1}^{2}$.

2. Chapter 2

- p46, Exercise 2.6.1.2 (1), should say $f: V \rightarrow W$ with $\operatorname{dim} W \geq \operatorname{dim} V$, and (3) should clarify $f: V \rightarrow V$.
- p49, last displayed equation, first line, missing \otimes two times.
- p51, Eqn. (2.7.1) denominator $2^{n} n$! change to $2^{m} m$! and 2^{n} change to 2^{m}.
- p53, Exercise 2.8.1 (1), add, "in particular, show $\operatorname{dim} S_{21} V=\frac{n\left(n^{2}-1\right)}{3}$ ".
- p53, Exercise 2.8.1 (8) change "so that we" to "and that we". Also add hint that the exactness is a special case of the Poincare Lemma.
- p65, Fig. 2.11.14: of the six realizations, only three are distinct.

3. Chapter 3

- p70,Thm. 3.1.4.3 reference [220] should be there and in (2), $\mathbf{v}^{3}-1$ should be \mathbf{v}^{3}.
- p82, lines 1,3: $A_{T}^{\wedge 2}$ should be T_{A}^{\wedge} (5 times).
- p82, §3.8.1.4: In Thm, It remains to show that the equations are not identically zero. This was shown in [4].
- p85, It is now known that $\underline{\mathbf{R}}\left(M_{m, m, m}\right) \geq 2 m^{2}-m$, see [7].
- p88, Thms. 3.9.3.1, 3.9.3.1, add "and Strassen's degree 5 equations."
- p89, first displayed matrix, indices in $(2,3)$ slots of blocks $1,3,4,6$ are incorrect. They should respectively be (122), (122), (012), (012).

4. Chapter 4

- p98, add sentence at the end of 4.1: If these questions cause no difficulty, then skep to Chapter 5.
- p100, add the example in the plane of $\left\{x^{2}=0\right\}$. In any degree d we do not have the equation $x y^{d-1}=0$ which is in the ideal of $\{x=0\}$, showing that set theoretic equations are not the same as scheme theoretic equations.
- p101 line above 4.2.3, change r to $r+1$

5. Chapter 5

- p122, 5.3.1, change "number of ways" to "number of parameters worth that"
- p127, Thm 5.5.1.1(4) $\mathbf{a b}-\mathbf{a}-\mathbf{b}-2$ change to $\mathbf{a b}-\mathbf{a}-\mathbf{b}+2$ two times.

6. Chapter 6

- p140, first bullet: "the number of elements in its conjugacy class" change to "the dimension of the module".
- p140, (6.2.3) $+e_{(132)}$ change to $-e_{(132)}$.
- p147, Thm 6.4.5.1: This is really only half the statement of the Double Commutant Thm., even in this special case, see e.g. [9] for the full statement.
- p140, Exercise 6.2.1(1) $v \rho_{[12] 3}=\rho_{[1|2| 3}$ change to $v \rho_{[12 \mid 3}=\lambda \rho_{[12] 3}$ for some $\lambda \in \mathbb{C}^{*}$, and similarly for the rest of the exercises.
- p153, $\S 6.7 .1$, displayed eqn., \sum change to \bigoplus
- p154, Exercise 6.7.1.1: $c_{\pi, \mu}^{\nu}$ change to $c_{\nu, \mu}^{\pi}$, also Hint: Say $|\pi|=k$, expand $(A \otimes B)^{\otimes k}$, and reshuffle to have all A 's first, then all B 's, and consider the subgroup of $\mathfrak{S}_{2 k}$ that preserves the shuffling.
- Exercise 6.7.3(2) \sum change to \bigoplus
- p160, Exercise 6.8.1.3 $\left(x_{1} \wedge \cdots \wedge x_{p}\right)^{p}$ change to $x_{1}^{p} \cdots x_{k}^{p}$
- p161, Prop. 6.8.2.1/Exercise 6.8.2.2. What is proved is that a nonzero weight vector is a highest weight vector iff $\mathfrak{n} . v=0$. To do the exercise, need the fact that $B=\exp (\mathfrak{b})$.
- p165, Exercise 6.9.2(2). To make the exercise easier, first do the case of the projection $G L(V) / B$ to a next-to minimal parabolic (show the fiber is a \mathbb{P}^{1}).
- p168, Prop. 6.10.4.1, remove the $S_{2 d} A$ terms from the ideal.
- p170, Exercise 6.10.6.6 is difficult, as the natural realizations of the modules will not lie in $S^{d}(A \otimes B)$, one must show their projections into $S^{d}(A \otimes B)$ are nonzero.

7. Chapter 7

- $\mathrm{p} 180, \Pi \mathbf{a}_{i}-\sum \mathbf{a}_{i}-n+1$ change to $\Pi \mathbf{a}_{i}-\sum \mathbf{a}_{i}+n-1$ in Thm 7.3.1.4(1) and above statement of Thm.
- p199, Displayed equation in Remark 7.7.1.2, second entry of second line should read $\Lambda^{5} B \otimes \Lambda^{5}(A \otimes C)$.
- p213, $\S 8.2 .5$, a better modern reference is [2]

8. Chapter 8

- p220, Prop. 8.6.1.2 does not appear in [39], and in fact dates back to Hadamard.
- p220, Proof of Prop. 8.6.1.2 last line $\ell_{1}^{\delta} \cdots \ell_{d}^{\delta}$ should be $\left(\ell^{1}\right)^{\delta} \cdots\left(\ell^{d}\right)^{\delta}$.
- p224-5, roles of V and V^{*} are accidently switched several times.

9. Chapter 9

- p235/6, Prop. 9.3.1 is not correct as stated because $\underline{\mathbf{R}}(x y z)=4$, not 3 as stated in proof p 236.
- p236, $\S 9.3 .2$, the symmetric border rank lower bounds via flattenings are easily seen to be $\binom{n}{\lfloor n / 2\rfloor}^{2}$ in both cases, as the image of flattenings are the appropriate sized minors (resp. sub-permanents) for the determinant (resp. permanent).

10. Chapter 10

- p260, $\S 10.5$. A better, and older reference for this section is [1].
- p266, Thm. 10.9.2.1, $S^{3} W$ change to $S^{d} W$.
- p267, In equation (10.10.1) the first term is not needed
- p269, displayed eqn. (4) $a_{3} \otimes b_{1} \otimes c_{1}+a_{1} \otimes b_{2} \otimes c_{2}+a_{1} \otimes b_{1} \otimes c_{2}+a_{2} \otimes b_{3} \otimes c_{1}+$ $a_{2} \otimes b_{1} \otimes c_{3}$ change to $a_{3} \otimes b_{1} \otimes c_{1}+a_{1} \otimes b_{2} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{3} \otimes c_{1}+$ $a_{2} \otimes b_{1} \otimes c_{3}$
- p281, reference to [3] is old edition

11. Chapter 11

- p275, the current (as of $6 / 13$) world record for the upper bound of the exponent of matrix multiplication is in [10].
- p276, the current (as of $6 / 13$) world record for the lower bound of the border rank (resp. rank) of matrix multiplication is $\underline{\mathbf{R}}\left(M_{n, n, n}\right) \geq 2 n^{2}-n$ in [7]. For rank, the current (as of $6 / 13$) world record is $\mathbf{R}\left(M_{n, n, n}\right) \geq 3 n^{2}-2 \sqrt{2} n^{3} / 2-$ $3 n[8]$ following work in [5] which showed $\mathbf{R}\left(M_{n, n, n}\right) \geq 3 n^{2}-4 n^{\frac{3}{2}}+3 n$.
- p280, the targets of teh maps M_{2}, M_{3} should respectively be $\left(\begin{array}{ccc}0 & * & 0 \\ * & * & * \\ 0 & * & 0\end{array}\right)$, $\operatorname{and}\left(\begin{array}{ccc}0 & 0 & * \\ 0 & 0 & * \\ * & * & *\end{array}\right)$.
- p276, Thm. 11.0.2.12, note also that $23 \geq \mathbf{R}\left(M_{3,3,3}\right)$, due to Laderman.
- p277, Remark: there are three families of lines on $\operatorname{Seg}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$, lines from distinct families intersect. This gives more insight into the algorithm.
- p277, first displayed equation is for operator with $a_{1}^{1}=0$, second is for operator with $a_{2}^{2}=0$, in third, the first c_{2}^{1} should be c_{1}^{2}.
- p279, Remark: since $T_{1}+T_{2}: A^{*} \times B^{*} \rightarrow C$ is surjective, in fact one has $\underline{\mathbf{R}}\left(T_{1}+T_{2}\right)=\mathbf{a}_{1} \mathbf{b}_{1}+1$.
- p280, second and third displayed equations are missing \otimes before many of the γ 's.
- p281, Remark: Prop. 11.3.1.1 is a special case of the algebraic Peter-Weyl Thm 13.6.3.
- p281, $\S 11.3 .2$, last line of paragraph, $S_{1}^{-1} S_{3}$ change to $S_{3}^{-1} S_{1}$.
- p284, first line, reference is incorrect, it should be [6]

12. Chapter 12

13. Chapter 13

- p322 proof of 13.4.1.1: \mathbb{F}_{2} should be $\{0,1\}$.

14. Chapter 14

15. Chapter 15

16. Chapter 16

- p389, second line of proof, \subseteq change to $=$. First displayed eqn. of proof, add summation over i in first term,

References

1. Josephine H. Chanler, The invariant theory of the ternary trilinear form, Duke Math. J. 5 (1939), 552-566. MR 0000221 (1,35e)
2. Jean Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949), 282-287. MR 0029360 (10,5861)
3. Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486
4. J. M. Landsberg, Explicit tensors of border rank at least 2n-1, preprint arXiv:1209.1664.
5. _, New lower bounds for the rank of matrix multiplication, preprint arXiv:1206.1530.
6. , Geometry and the complexity of matrix multiplication, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 2, 247-284. MR MR2383305 (2009b:68055)
7. J.M. Landsberg and Giorgio Ottaviani, New lower bounds for the border rank of matrix multiplication, preprint, arXiv:1112.6007.
8. Alex Massarenti and Emanuele Raviolo, The rank of $n \times n$ matrix multiplication is at least $3 n^{2}-2 \sqrt{2} n^{3} / 2-3 n$, arXiv: 1211.6320 .
9. Claudio Procesi, Lie groups, Universitext, Springer, New York, 2007, An approach through invariants and representations. MR MR2265844 (2007j:22016)
10. Virginia Williams, Breaking the coppersimith-winograd barrier, preprint.

E-mail address: jml@math.tamu.edu

