
GEOMETRY AND THE COMPLEXITY OF MATRIX MULTIPLICATION

J.M. LANDSBERG

Abstract. We survey results in algebraic complexity theory, focusing on matrix multiplication.
Our goals are (i.) to show how open questions in algebraic complexity theory are naturally posed
as questions in geometry and representation theory, (ii.) to motivate researchers to work on
these questions, and (iii.) to point out relations with more general problems in geometry. The
key geometric objects for our study are the secant varieties of Segre varieties. We explain how
these varieties are also useful for algebraic statistics, the study of phylogenetic invariants, and
quantum computing.

1. Introduction

1.1. Strassen’s algorithm. Let A and B be 2 × 2 matrices

A =

(

a1
1 a1

2

a2
1 a2

2

)

, B =

(

b11 b12
b21 b22

)

.

Recall the usual algorithm to calculate the matrix product C = AB:

(1.1.1)

c11 = a1
1b

1
1 + a1

2b
2
1,

c12 = a1
1b

1
2 + a1

2b
2
2,

c21 = a2
1b

1
1 + a2

2b
2
1,

c22 = a2
1b

1
2 + a2

2b
2
2.

This algorithm uses 8 multiplications and for n× n matrices it uses n3.
Question: Is there a “better” algorithm for multiplying matrices? By “better” one could mean
an algorithm that uses fewer arithmetic operations (+,−, ∗), or simply fewer multiplications.
The number of multiplications needed governs the total number of arithmetic operations in such
a way that asymptotic results depend primarily on the number of multiplications used. (See
Definition 1.2.1 for a precise statement.) In this article we focus exclusively on minimizing
multiplications. (In actual implementations memory cost is also an important factor.)

In 1969 V. Strassen [54] made the following discovery. Set

(1.1.2)

I = (a1
1 + a2

2)(b
1
1 + b22),

II = (a2
1 + a2

2)b
1
1,

III = a1
1(b

1
2 − b22)

IV = a2
2(−b

1
1 + b21)

V = (a1
1 + a1

2)b
2
2

V I = (−a1
1 + a2

1)(b
1
1 + b12),

V II = (a1
2 − a2

2)(b
2
1 + b22),
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Now check for yourself that if C = AB, then

(1.1.3)

c11 = I + IV − V + V II,

c21 = II + IV,

c12 = III + V,

c22 = I + III − II + V I.

Thus (1.1.2),(1.1.3) provides an algorithm for multiplying two by two matrices that uses only
seven multiplications.

Remark 1.1.1. Strassen was attempting to prove, by process of elimination, that such an algo-
rithm did not exist when he arrived at it. We will see in §3 why the result could have been
anticipated using elementary algebraic geometry.

1.2. The exponent of matrix multiplication. In Strassen’s algorithm the entries of the
matrices need not be scalars - they could be elements of an algebra. Let A,B be 4× 4 matrices,
and write

A =

(

a1
1 a1

2

a2
1 a2

2

)

, B =

(

b11 b12
b21 b22

)

.

where ai
j , b

i
j are 2×2 matrices. We may apply Strassen’s algorithm to get the blocks of C = AB

in terms of the blocks of A,B performing 7 multiplications of 2×2 matrices. Since we can apply
Strassen’s algorithm to each block, we can multiply 4× 4 matrices using 72 = 49 multiplications
instead of the usual 43 = 64. In fact, if A,B are 2k × 2k matrices, we may multiply them using
7k multiplications rather than the usual (2k)3. Even if n is not a power of two, we can still save
multiplications asymptotically by enlarging the dimensions of our matrices, placing zeros in the
new entries, to obtain matrices whose size is a power of two. Asymptotically we can multiply
n × n matrices using O(nlog2(7)) ≃ O(n2.81) operations, as let n = 2k and write 7k = (2k)a so
k(log27) = ak(log22) and we obtain a = log27.

Definition 1.2.1. The exponent ω of matrix multiplication is

ω = inf{h ∈ R |Matn×n may be multiplied using O(nh) scalar multiplications}.

Strassen’s algorithm shows ω ≤ log2(7) < 2.81.

Remark 1.2.2. If one replaces the phrase “scalar multiplications” with the phrase “arithmetic
operations” in the definition, ω is unchanged, see [14], Proposition 15.1.

1.3. Matrix multiplication as a bilinear map. Matrix multiplication of square matrices is
a bilinear map that we denote

(1.3.1) Mn,n,n : C
n2

× C
n2

→ C
n2

.

(In this article we restrict our attention to the complex numbers, so e.g., all vector spaces are
finite dimensional vector spaces over C.) When discussing a minimal number of arithmetic
operations (or multiplications) for executing a bilinear map, it is usually within the context of a
class of algorithms. A natural class of algorithms for executing a bilinear map is as follows: let
A,B,C be vector spaces, let A∗ := {f : A → C | f is linear} denote the dual vector space (and
similarly for B), and let T : A × B → C be a bilinear map. Choose αi ∈ A∗, βi ∈ B∗, ci ∈ C
such that T (v,w) =

∑r
i=1 α

i(v)βi(w)ci. The minimal number r over all such presentations of
T is called the rank of T and denoted R(T ). A related notion, more natural to geometry and
defined in §2, is that of border rank, denoted R(T ). Another concept that comes into play when
discussing the space of all bilinear maps A×B → C, is the typical rank, which is the rank of a
generic bilinear map A×B → C.
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Thus R(Mn,n,n) and R(Mn,n,n) measure the number of multiplications that are needed in
order to compute the product of two n× n matrices. Strassen’s algorithm shows that the rank
of the multiplication of two by two matrices is at most seven, and S. Winograd [58] proved that
in fact it equals seven.

1.4. Overview. To examine the complexity of matrix multiplication more geometrically, we
first, in §2, rephrase it using tensors. Next, in §3, we introduce algebraic varieties which stratify
the space of tensors, the secant varieties of Segre varieties. (The above-mentioned border rank of
a tensor describes its location with respect to this stratification.) This is done in two steps, first
introducing secant varieties to any algebraic variety in §3.3; then specializing to Segre varieties
in §3.5. We also rephrase the main open problems in the complexity of matrix multiplication in
terms of secant varieties of Segre varieties. In §3.8 we summarize the known results.

Before discussing those results in detail, we take two detours. In the first, we describe two
problems from algebraic geometry where secant varieties arise: the polynomial Waring problem
and Hartshorne’s conjecture on linear normality. These are described in in §4. In the second, we
describe other applications of secant varieties of Segre varieties - to algebraic statistics (especially
the study of phylogenetic invariants) and quantum computing, which is done in §5. These detours
will allow the reader to place the topics discussed in the remainder of the paper in a larger
mathematical context.

In §6 we describe Strassen’s equations for secant varieties of Segre varieties and their use in
establishing lower bounds for rank and border rank. In particular, we present a new proof of
Bläser’s 5

2-Theorem. We rephrase Strassen’s equations invariantly in §10 and describe general-
izations.

While it is well known that the limit of a family of secant lines is a tangent line (or a secant
line itself), exactly what can be in the limit of a secant k-plane is not known. We discuss
what is known about this problem in §7 and show how to use this knowledge to establish upper
bounds for the complexity of matrix multiplication in §8.1. (We explain how to use such limits
to establish lower bounds in the discussion below Theorem 3.8.6.) A group-theoretic approach
to upper bounds is described briefly in §8.2.

We discuss dimensions of secant varieties of Segre varieties in §9, focusing on the use of
Terracini’s Lemma.

Any proper study of varieties invariant under a group action, e.g., the secant varieties of Segre
varieties, should exploit representation theory. The representation theory relevant to this study
is discussed in §11. Representation theory is the most important tool discussed in this article.

A common technique in geometry is to understand a complicated geometric object via the con-
struction of auxiliary objects that are more tractable, and the problem at hand is no exception.
We describe two such objects in §12.

In §13, we describe a collection of techniques developed by J. Weyman for the study of G-
varieties and their application to secant varieties of Segre varieties. (A G-variety is a variety
invariant under the action of an algebraic group G.) These techniques help one to find the entire
minimal free resolution of the ideal of a variety and describe the nature of its singularities.

Finally, in an appendix §14, we give nontraditional and more invariant presentations of two
standard notions in complexity theory - multiplicative complexity and separations.

1.5. Acknowledgments. Many colleagues generously helped the author in the preparation of
this article. Special thanks are due to E. Allman, M. Bläser, P. Bürgisser, L. Garcia, D. Gross,
J. Morton, G. Ottaviani, C. Robles and the anonymous referee for numerous suggestions to
improve this article. In particular, the new proof of Bläser’s theorem arose out of discussions
with P. Bürgisser.
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2. Tensor formulation

Let V, Vj , be vector spaces. The dual space V ∗ and the tensor product V1⊗ · · · ⊗ Vn are defined
as follows:

V ∗ : = {f : V → C | f is linear},

V1⊗ · · · ⊗ Vn : = {f : V ∗
1 × · · · × V ∗

n → C | f is linear in each factor}.

Given vj ∈ Vj , αj ∈ V ∗
j , define v1⊗ · · · ⊗ vn ∈ V1⊗ · · · ⊗ Vn by v1⊗ · · · ⊗ vn(α1, . . . , αn) =

α1(v1) · · ·αn(vn). An element f ∈ V1⊗V2, that is, a bilinear map f : V ∗
1 × V ∗

2 → R, may also be
considered as a linear map

f : V ∗
1 → V2

α 7→ f(α, ·)

where f(α, ·) ∈ (V ∗
2 )∗ = V2, that is, for β ∈ V ∗

2 , f(α, ·)(β) = f(α, β).

Definition 2.0.1. Let V1, . . . , Vk be vector spaces. An element z ∈ V1⊗ · · · ⊗ Vk is called
decomposable if there exist vi ∈ Vi such that z = v1⊗ · · · ⊗ vk. Define the rank of an element T ∈
V1⊗V2⊗ . . .⊗Vk to be the minimal number r such that T =

∑r
u=1 zu with each zu decomposable.

We refer to an explicit expression for a tensor T as a sum of r monomials as a computation of
T of length r. This terminology is consistent with the definition of the rank of a linear map
T : V ∗

1 → V2 (that is, an element T ∈ V1⊗V2) and the rank of a bilinear map T : V ∗
1 × V ∗

2 → V3

given in §1.2 (that is, an element of T ∈ V1⊗V2⊗V3 = A∗⊗B∗⊗C). Note that the length of a
computation of a tensor is unchanged if we make changes of bases in the vector spaces Vi.

2.1. Tensor expressions for the standard algorithm and Strassen’s algorithm. The
standard algorithm (1.1.1) for the multiplication of two by two matrices M2,2,2 (1.3.1) in terms
of tensors is follows: let A,B,C each denote the space of 2× 2 matrices (that is, A,B,C ≃ C

4);
give A the standard basis ai

j for the matrix with a 1 in the (i, j)-th slot and zeros elsewhere, and

let αi
j denote the corresponding elements of the dual basis of A∗, and similarly for B,C. Then

the standard algorithm for M2,2,2 : C
4∗ × C

4∗ → C
4 is:

(2.1.1)
M2,2,2 =α1

1⊗β
1
1⊗c

1
1 + α1

2⊗β
2
1⊗c

1
1 + α2

1⊗β
1
1⊗c

2
1 + α2

2⊗β
2
1⊗c

2
1

+ α1
1⊗β

1
2⊗c

1
2 + α1

2⊗β
2
2⊗c

1
2 + α2

1⊗β
1
2⊗c

2
2 + α2

2⊗β
2
2⊗c

2
2

and Strassen’s algorithm (1.1.2),(1.1.3) is

(2.1.2)

M2,2,2 =(α1
1 + α2

2)⊗(β1
1 + β2

2)⊗(c11 + c22) + (α2
1 + α2

2)⊗β
1
1⊗(c21 − c22)

+ α1
1⊗(β1

2 − β2
2)⊗(c12 + c22) + α2

2⊗(−β1
1 + β2

1)⊗(c21 + c11)

+ (α1
1 + α1

2)⊗β
2
2⊗(−c11 + c12) + (−α1

1 + α2
1)⊗(β1

1 + β1
2)⊗c22

+ (α1
2 − α2

2)⊗(β2
1 + β2

2)⊗c11.

2.2. Approximate algorithms. An approximate algorithm for a tensor T is a sequence of
algorithms, usually of lower rank tensors, that converge to an algorithm for T . The border rank
of a tensor T is the lowest rank of tensors in such sequences and is denoted R(T ). Note that
rank and border rank can indeed be different - consider the following example:

(2.2.1) T = a1⊗b1⊗c1 + a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1

One can show that R(T ) = 3, but we can approximate T as closely as we like by tensors of rank
two as follows. Let

(2.2.2) T (ǫ) =
1

ǫ
[(ǫ− 1)a1⊗b1⊗c1 + (a1 + ǫa2)⊗(b1 + ǫb2)⊗(c1 + ǫc2)]
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and allow ǫ → 0, so R(T ) ≤ 2 (in fact equality holds). The geometry of this limit is discussed
in §3.5.

3. Geometric formulation

3.1. Varieties. Let V be vector space and let PV be the associated projective space of lines
through the origin in V , so we have a map π : V \0 → PV . We use the following notations: for

v ∈ V \0, let [v] = π(v) ∈ PV and for Z ⊂ PV , let Ẑ = π−1(Z) ⊂ V . For scale invariant sets
U ⊂ V \0, write PU for π(U). We use projective space in addition to vector spaces because the
properties we are interested in (rank, border rank) are scale invariant. Because we go back and
forth between vector and projective spaces many objects end up being decorated with hats and
“P”s.

For our purposes, a variety X ⊂ PV is the common zero locus in PV of a collection of
homogeneous polynomials on V . Given a variety X, we will construct a sequence of auxiliary
varieties X ⊂ σ2(X) ⊂ · · · ⊂ σf (X) = PV , called the secant varieties of X which determine
a stratification of PV . This stratification will generalize the stratification of the space of m ×
n matrices by rank. When V = A1⊗ · · · ⊗ An and X is the projectivization of the set of
decomposable tensors, the stratification will coincide with the stratification of tensors by their
border rank, and f is the typical rank mentioned in §1 and defined below.

3.2. Joins. For readers not accustomed to secant varieties, we begin with several special cases
to help visualize them. Projective space PV has the property that, given any two distinct points
p, q ∈ PV , there is a unique line, that is, a linearly embedded P

1 ⊂ PV containing p and q,
which we denote P

1
p,q. Let C ⊂ PV be a smooth curve (one-dimensional variety) and q ∈ PV a

point. Let J(q, C) ⊂ PV denote the cone over C with vertex q, which by definition contains the
union of all points on all lines containing q and a point of C. More precisely, J(q, C) denotes
the closure of the set of such points. It is only necessary to take the closure when q ∈ C, as in
this case one also includes the points on the tangent line to C at q, because, as anyone who has
ever taught calculus knows, the tangent line is the limit of secant lines P

1
q,xj

as xj → q. Define

J(q, Z) similarly for Z ⊂ PV , a variety of any dimension. Unless Z is a linear space and q ∈ Z,
dim J(q, Z) = dimZ + 1.

The join of Y,Z ⊂ PV is

J(Y,Z) =
⋃

x∈Y,y∈Z,x 6=y P
1
xy.

Here the overline denotes Zariski closure, that is, if U ⊂ PV is a subset, then U is the common
zero set of all homogeneous polynomials vanishing on U . The same set is obtained if one takes
the closure in the usual topology, but the Zariski closure is more useful when dealing with
polynomials. We may think of J(Y,Z) as the union of the cones ∪q∈Y J(q, Z) (or as the union
of the cones over Y with vertices points of Z.)

3.3. Secant varieties. If Y = Z, we call σ2(Y ) = J(Y, Y ) the secant variety of Y . By the
discussion above, σ2(Y ) contains all points of all secant and tangent lines to Y . Similarly, define
the join of k varieties to be the closure of the union of the corresponding P

k−1’s, or by induction as
J(Y1, . . . , Yk) = J(Y1, J(Y2, . . . , Yk)). Define k-th secant variety of Y to be σk(Y ) = J(Y, . . . , Y ),
the join of k copies of Y . For smooth varieties Y ⊂ PV , let τ(Y ) denote the union of all points
on all embedded tangent lines to Y . Usually τ(Y ) is a hypersurface in σ2(Y ).

For a variety X ⊂ PV , and point p ∈ PV , the X-rank of p is the smallest number r such that
p is in the linear span of r points of X. Thus σr(X) is the Zariski closure of the set of points of
X-rank r. The X-border rank of p is the smallest r such that p ∈ σr(X). The typical X-rank of
PV is the smallest r such that σr(X) = PV .
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3.4. Expected dimensions. The expected dimension of J(Y,Z) is min{dimY + dimZ +
1,dim PV } because a point x ∈ J(Y,Z) is obtained by picking a point of Y , a point of Z,
and a point on the line joining the two points. This expectation fails if and only if a general
point of J(Y,Z) lies on a family of lines intersecting Y and Z, as when this happens one can
vary the points on Y and Z used to form the secant line without varying the point x.

Similarly, the expected dimension of σr(Y ) is r(dimY ) + r − 1 which fails if and only if a
general point of σr(Y ) lies on a family of secant P

r−1’s to Y .

3.5. The Segre variety. A linear map f : V ∗
1 → V2, that is, an element f ∈ V1⊗V2, is of rank

one if and only if there exists v1 ∈ V1, v2 ∈ V2 such that, expressed as a tensor, f = v1⊗v2.
Geometrically, v1 is the annihilator of ker(f) ⊂ V ∗

1 and v2 spans the image of f . In bases, v1
corresponds to a column vector, v2 a row vector, and the matrix of any rank one linear map is
obtained by multiplying a column vector with a row vector. We want to study linear maps and
tensors by their rank (which is unchanged if we multiply the map by a nonzero constant), so we
utilize the following geometric object:

Define Seg(PV1 × PV2) ⊂ P(V1⊗V2), the (two-factor) Segre variety to be the projectivization
of all the rank one elements of V1⊗V2. Here Seg is the injective map

Seg : PV1 × PV2 → P(V1⊗V2)

([v1], [v2]) 7→ [v1 ⊗ v2]

which, in bases, corresponds to multiplying a column vector (defined up to scale) with a row
vector (defined up to scale) to get a rank one rectangular matrix (defined up to scale). Note
that σ̂r(Seg(PV1 × PV2)) is isomorphic to the set of (dimV1 × dimV2)-matrices of rank at most
r, as the rank at most r matrices are exactly those that can be written as the sum of r matrices
of rank one.

More generally, the projectivization of the set of decomposable tensors in V1⊗ · · · ⊗ Vn, P{T ∈
V1⊗ · · · ⊗ Vn | ∃vj ∈ Vj , T = v1⊗ · · · ⊗ vn}, may be identified with the product PV1 × · · · ×PVn.
Let Seg(PV1 × · · · × PVn) ⊂ P(V1⊗ · · · ⊗ Vn) denote the corresponding variety, the (n-factor)
Segre variety.

3.6. The Segre variety and border rank. For any variety X ⊂ PV , a point of σ2(X) is a
point on a secant line or a point on a line that is a limit of secant lines, so, if X is smooth, a
point of σ2(X), is either on X, on a secant line to X, or on a tangent line to X. Equation (2.2.2),
when projectivized, describes a curve of points on secant lines of Seg(P1 × P

1 × P
1) limiting to

a point on a tangent line to Seg(P1 × P
1 × P

1), that is, a point of τ̂(Seg(PA × PB × PC)). In
other words, equation (2.2.2) exhibits an explicit tensor whose rank is different from its border
rank. (Aside: Seg(PV1 × PV2) has the unusual property that any point on a tangent line is also
on a secant line, and more generally, for X = Seg(PV1 × PV2), X-rank coincides with X-border
rank, but this property fails to hold for n factor Segre varieties with n > 2.)

3.7. Geometric formulations of notions from complexity. We can now give geometric
formulations of the concepts introduced in §1 and §2:

• The border rank of a tensor T ∈ V1⊗ · · · ⊗ Vn, R(T ), defined in §2 above, is the smallest
r such that [T ] ∈ σr(Seg(PV1 × · · · × PVn)).

• The border rank of matrix multiplication

Mm,n,p : (Cm∗⊗C
n) × (Cn∗⊗C

p) → (Cm∗⊗C
p)

is the smallest r such that

[Mm,n,p] ∈ σr(Seg(P(Cm⊗C
n∗) × P(Cn⊗C

p∗) × P(Cm∗⊗C
p)))



GEOMETRY AND THE COMPLEXITY OF MATRIX MULTIPLICATION 7

• The exponent of matrix multiplication is

limn→∞{minr{[Mn,n,n] ∈ σr(Seg(P
n2−1 × P

n2−1 × P
n2−1)}}

• Upper bounds for border rank for a given n can be established by finding values of r such

that [Mn,n,n] ∈ σr(Seg(P
n2−1 ×P

n2−1 ×P
n2−1)) and lower bounds by finding values of r

such that [Mn,n,n] /∈ σr(Seg(P
n2−1 × P

n2−1 × P
n2−1)).

• The typical rank of an element of C
a⊗C

b⊗C
c is the smallest r such that σr(Seg(P

a−1 ×
P

b−1 × P
c−1)) = P(Ca⊗C

b⊗C
c).

3.8. What is known regarding matrix multiplication. The problem of determining the
typical rank for the spaces of tensors that include the multiplication of square matrices has been
completely solved:

Theorem 3.8.1 (T. Lickteig [44]). For all n 6= 3,

dimσr(Seg(P
n−1 × P

n−1 × P
n−1)) = min{r(3n − 2) − 1, n3 − 1}.

Theorem 3.8.1 shows that Strassen’s algorithm for 2×2 matrices could have been anticipated,
as σ7(Seg(P

3 × P
3 × P

3)) = P(C4⊗C
4⊗C

4). (This observation is enough to recover the bound
ω < 2.81 mentioned in §1.2.) We outline the proof of Theorem 3.8.1 and discuss what is known
about typical rank in §9.

For the n = 3 case we have:

Theorem 3.8.2 (Strassen [52]). σ4(Seg(P
2 × P

2 × P
2)) is a hypersurface of degree nine.

This case was solved by finding an explicit equation vanishing on σ4(Seg(P
2 × P

2 × P
2)). In

§6 we discuss this equation and its consequences for matrix multiplication.

The best lower bound on the border rank of matrix multiplication is:

Theorem 3.8.3 (Lickteig [43]). R(Mm,m,m) ≥ 3m2

2 + m
2 − 1.

While we do not provide Lickteig’s proof here, we remark that implicit in his proof are the
presence of auxiliary varieties which we believe will play a central role in future work. In §12
we describe some of these varieties, including the subspace variety that is implicit in his proof.

The best lower bound on the rank of matrix multiplication is:

Theorem 3.8.4 (M. Bläser [10]). R(Mm,m,m) ≥ 5
2m

2 − 3m.

A new proof of Bläser’s theorem is presented in §6.2. Bläser has also proved that R(M3,3,3) ≥
19 [11], and we discuss the main tool in the proof of Bläser’s 19-theorem in §14.2.

The best upper bound for the exponent of matrix multiplication is ω < 2.38 due to D.
Coppersmith and S. Winograd [24]. They use methods of Strassen [53]. We do not discuss
these asymptotic bounds as we have no geometric interpretation for them. However, an earlier
asymptotic bound due to A. Schönhage [48] does have relations with geometry. We discuss
the geometric aspect of Schönhage’s argument in §8.1, and present his explicit approximate
algorithm for multiplying three by three matrices using 21 multiplications.

There is also an algorithm for multiplying 3 × 3 matrices using 23 multiplications due to J.
Laderman [34] which we do not discuss.

The only case where the exact rank and border rank are known for the multiplication of
square matrices are two by two matrices:

Theorem 3.8.5 (Winograd [58]). R(M2,2,2) = 7.

J. Hopcroft and L. Kerr [31] proved Theorem 3.8.5 in the case of algorithms with integer
coefficients.
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We do not discuss the proof of Theorem 3.8.5. We do mention here that an alternative
proof is a consequence of a theorem of R. Brockett and D. Dobkin [13] that the rank of the
multiplication in any simple algebra is at least twice the dimension of the algebra minus one.
A proof of the Brockett-Dobkin theorem, due to W. Baur and presented in [14], proceeds by
splitting any putative simpler algorithm several times to eventually obtain a contradiction by
producing a right ideal that is contained in a left ideal.

Theorem 3.8.6 ([36]). R(M2,2,2) = 7.

To prove Theorem 3.8.6 we first decomposed σ6(Seg(P
3 × P

3 × P
3)) into various components

based on how the limiting P
5 was obtained from family of secant P

5’s. (By Theorem 3.8.5 one
only needs to examine limiting planes.) For each possible limiting type we wrote down normal
forms for the limit. Then we applied variants of Baur’s proof of the Brockett-Dobkin theorem
in each case to obtain a contradiction. In §7 we outline how to determine such limiting planes,
which are also used in the construction of upper bounds.

3.9. What is not known. A central conjecture in algebraic complexity theory is that the
exponent of matrix multiplication is two. It is also of importance to find good upper and lower
bounds for matrix multiplication for small and human scale values of n. Already for n = 3
all that is known is 14 ≤ R(M3,3,3) ≤ 21, and 19 ≤ R(M3,3,3) ≤ 23. While the problem of
finding the defining equations for secant varieties of Segre varieties is a means to an end as far
as matrix multiplication is concerned, for the purposes of algebraic statistics, it is essential to
develop techniques for finding these equations and the equations of related varieties. For the
area of phylogenetic invariants, an important open problem is to find the defining equations for
σ4(Seg(P

3 ×P
3×P

3)) as explained in §5.2. Other open questions are discussed in the remaining
sections.

4. Secant varieties in algebraic geometry

In this section we take a detour from our main subject to discuss two other situations where
secant varieties arise: the solution of the polynomial Waring problem and the resolution of
Hartshorne’s conjecture on linear normality. Nothing in this section is used in the following
sections (with the exception of the definition of the Grassmannian, used in §7).

4.1. The polynomial Waring problem and variants. Waring asked if there exists a function
k(s) such that every natural number n is expressible as at most s k-th powers of integers. Hilbert
answered Waring’s question affirmatively and this function has essentially been determined, see
[55] for a survey of results and related open questions.

The polynomial Waring problem is as follows:

What is the smallest r0 = r0(d, n) such that a general homogeneous polynomial P (x1, . . . , xn)
of degree d in n variables is expressable as the sum of r0 d-th powers of linear forms?

Let V = C
n, and let SdV ∗ denote the space of homogeneous polynomials of degree d on V .

Let

vd : PV ∗ → PSdV ∗

[α] 7→ [α ◦ · · · ◦ α]

denote the Veronese map that sends the projectivization of a linear form to the projectivization
of its d-th power. Thus the image is the set of (projectivized) d-th powers of linear forms.
Similarly σp(vd(PV )) is the Zariski closure of the set of homogeneous polynomials that are
expressable as the sum of p d-th powers of linear forms. So the polynomial Waring problem may
be re-expressed as:
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Let V = C
n and let X = vd(PV

∗). What is the typical X-rank of an element of PSdV ∗, that
is, what is the smallest r0 = r0(d, n) such that σr0

(vd(PV
∗)) = PSdV ∗?

This problem was solved by Alexander and Hirshowitz [4]: all σr(vd(P
n)) are of the expected

dimension except σ7(v3(P
4)), σ5(v4(P

2)), σ9(v4(P
3)), σ14(v4(P

4)), (which are all hypersurfaces),

and σr(v2(P
n)), 2 ≤ r ≤ n (where dimσr(v2(P

n)) = rn− r2−3r
2 − 1) . In other words,

Theorem 4.1.1. [4] A general homogeneous polynomial of degree d in n variables is expressable
as the sum of

r0(d, n) = ⌈

(

n+d−1
d

)

+ 1

n
⌉

d-th powers with the exception of the cases r0(3, 5) = 8, r0(4, 3) = 6, r0(4, 4) = 10, r0(4, 5) = 15,
and d = 2, where r0(2, n) = n.

For a beautiful discussion of this problem and its history, including a self-contained proof, see
[12].

A variant of the polynomial Waring problem is to find the typical rank of alternating tensors.
Let ΛkV ⊂ V ⊗k be the space of alternating tensors. Let G(k, V ) ⊂ P(ΛkV ) denote the projec-
tivization of the set of minimal rank alternating tensors. This variety is called the Grassmanian
of k-planes through the origin in V (that is, we have a bijection, for linearly independent sets
of vectors v1, . . . , vk, Span{vk, . . . , vk} ≃ [v1 ∧ · · · ∧ vk]). In [18] they show that for 3 ≤ k ≤ n

2 ,
σr(G(k, n)) has the expected dimension provided that r ≤ n

k
. Previous to that, it was known

that G(2, n) had all secant varieties defective and G(3, 7), G(4, 8), and G(3, 9) all had their
“last” secant variety before filling defective. (The examples G(2, n) are just the skew symmetric
matrices of minimal rank; the examples G(3, 7) and G(4, 8) can be understood in terms of the
geometry of the exceptional groups G2 and Spin7.)

Further generalizations of the polynomial Waring problem and their uses are discussed in [21].
The main tool for proving that secant varieties are of the expected dimension is Terracini’s

Lemma 9.2.1. Proving they are degenerate, other than in cases when it is obvious, is more
subtle. For these Waring problems, there are often interpretations of the exceptional cases in
terms of the geometry of Veronese varieties. The most interesting exception in the case of secant
varieties of Segre varieties is σ4(Seg(P

2 × P
2 × P

2)) which is discussed in detail in §6. In the
proof of Lemma 3.16 of [1], a geometric explanation of the degeneracy is given: any four points
on Seg(P2 × P

2 × P
2) lie in some v3(P

2) ⊂ P(S3
C

2) ⊂ P(C2⊗C
2⊗C

2). Thus when one applies
Terracini’s Lemma, each of the four embedded tangent spaces to the Segre must have at least a
two-dimensional subspace in the P(S3

C
2) = P

9, forcing a degeneracy. It would be interesting to
have a systematic understanding of the Veronese varieties that unirule these exceptional cases,
e.g., in terms of representation-theoretic data.

4.2. Zak’s theorems. Smooth projective varieties Xn ⊂ P
n+a of small codimension were shown

by W. Barth and M. Larsen (see, e.g., [7]) to behave topologically as if they were complete
intersections, i.e, the zero set of a homogeneous polynomials. This motivated R. Hartshorne’s
famous conjecture on complete intersections [30], which says that if a < n

2 , then X must indeed
be a complete intersection. A first approximation to this difficult conjecture was also made by
Hartshorne - his conjecture on linear normality, which was proved by F. Zak [59] (see [60] for an
exposition). The linear normality conjecture was equivalent to showing that if a < n

2 + 2, and
X is not contained in a hyperplane, then σ2(X) = P

n+a. Zak went on to classify the exceptions
in the equality case a = n

2 + 2. There are exactly four, which Zak called Severi varieties (after
Severi, who solved the n = 2 case [50]). The first three Severi varieties have already been
introduced: v2(P

2) ⊂ P
5, Seg(P2 × P

2) ⊂ P
7, and G(2, 6) ⊂ P

13. The last is the complexified
Cayley plane OP

2 ⊂ P
15. These four varieties admit uniform interpretations as the set of rank

one elements in a rank three Jordan algebra over a composition algebra.
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An interesting open question is the secant defect problem. For a smooth projective variety
Xn ⊂ PV , not contained in a hyperplane, with σ2(X) 6= PV , let δ(Xn) = 2n + 1 − dimσ2(X),
the secant defect of X. The largest known secant defect is 8, which occurs for the complexified
Cayley plane. Problem: Is a larger secant defect than 8 possible? If we do not assume the
variety is smooth, the defect is unbounded. (This question was posed originally in [42].)

5. Other uses of secant varieties of Segre varieties and related objects

5.1. Algebraic Statistics. A probability distribution is a point in V := R
a1⊗ · · · ⊗ R

an where
the sums of coordinate elements add to one. For example, say we have two biased coins. Then
V = R

2⊗R
2 and a point corresponds to a matrix

(

ph,h ph,t

pt,h pt,t

)

where ph,h is the probability that both coins, when tossed, come up heads, etc...
A statistical model is a family of probability distributions given by a set of constraints that

these distributions must satisfy, that is, a subset of V . An algebraic statistical model consists of
all joint probability distributions that are the common zeros of a set of polynomials on V .

To continue our example, assume the outcome of the two coin tosses do not effect each other
(as is the case with actual coins). Then the resulting matrix must have rank one. The set of
all rank one, 2 × 2 matrices in the positive coordinate simplex is the corresponding algebraic
statistical model, but it is almost equivalent to work with Ŝeg(RP

1 × RP
1).

Now assume we can measure the outcome of two of the events (tosses) but there may be a
third event whose outcome influences the outcome of the other two although the outcomes of
the two events we can measure are independent of one another (e.g. someone may be cheating
by using magnets).

Näıvely we should have a point of R
a1⊗R

a2⊗R
a3 but we can’t measure the possible third, in

fact we don’t even know what a3 should be.
Let’s posit that some fixed a3 parametrizes the third outcome (if we posit there is no third

event, then one takes a3 = 1). Then we sum up over all possibilities for the third factor to get
a 2 × 2 matrix whose entries are

(5.1.1) pi,j = pi,j,1 + · · · + pi,j,a3
, 1 ≤ i ≤ a1, 1 ≤ j ≤ a2

The algebraic statistical model here is the set of rank at most a3 matrices in the space of a1×a2

matrices, σ̂a3
(Seg(RP

a1−1 × RP
a2−1)). Thus, given a particular model, e.g. a fixed value of a3,

to test if our data (as points of R
a1⊗R

a2) fits the model, we can check if it (mostly) lies inside
σ̂a3

(Seg(RP
a1−1 × RP

a2−1)).
In algebraic statistics one wants to test if a given model is applicable to a particular collection

of data sets. Thus in particular, one needs a way of testing if a point p ∈ R
a1⊗ · · · ⊗ R

an is a
sum of at most r decomposable elements.

It is easier to solve this problem first over the complex numbers and then return to the real
situation later. Thus to test models of the type discussed above, one needs defining equations for
secant varieties of Segre varieties. In sections §6 - 13 we discuss methods for finding such equa-
tions. These methods are applicable to finding equations for more general algebraic statistical
models as well. They all rely on exploiting the group under which the model is invariant.

For more on algebraic statistics see [32, 47].

5.2. Phylogenetic invariants. This is a special case of algebraic statistics, but is sufficiently
important to merit its own subsection. In order to determine a tree that describes the evolu-
tionary descent of a family of extant species, J. Lake [35], J. Cavender and J. Felsenstein [20]
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proposed the use of what is now called algebraic statistics by viewing the four bases composing
DNA as the possible outcomes of a random variable.

Given a collection of extant species, one would like to assess the likelyhood of each of the
possible evolutionary trees that could have led to them. To do this, one can test the various
DNA sequences that arise to see which algebraic statistical model fits best. More than that, the
invariants discussed below identify the trees (nearly) uniquely.

In what follows, contrary to some of the literature, we ignore time.
The simplest situation is where one species gives rise to two new species. This can be pictured

by a tree of the form

F

A2A1

Figure 1.

There are three species involved, the parent F and the two offspring A1, A2, so the DNA
occupies a point of the positive coordinate simplex in R

4⊗R
4⊗R

4, and we make our lives easier
by working with P(C4⊗C

4⊗C
4). We can measure the DNA of the two new species but not the

ancestor, so the relevant algebraic statistical model is σ4(Seg(P
3×P

3)), which is well understood.
Here a1 = a2 = a3 = 4 in the analogue of equation (5.1.1) and we sum over the third factor. In
this case there is nothing new to be learned from the model.

The next case is where a parent F gives rise to three new species A1, A2, A3. Assuming
species bifurcate, one might think that this gives rise to three distinct algebraic statistical
models, as we could have F giving rise to A1 and G, then G splitting to A2 and A3 or two
other possibilities. However, all three scenarios give rise to the same algebraic statistical model:
σ4(Seg(P

3 × P
3 × P

3)), see [6]. In other words, the following pictures all give rise to the same
algebraic statistical models.

A1

F

A2

F

A1

F

A2 A2 A1A3 A3 A3

Figure 2.

The defining equations of σ4(Seg(P
3 × P

3 × P
3)) are not known, and for reasons we explain

below, it is a central question for the study of phylogenetic invariants to find them.

Now consider the case where there are four new species A1, A2, A3, A4 all from a common
ancestor F . Here finally there are three different scenarios that give rise to distinct algebraic
statistical models.
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FF

A1

F

A2 A3 A4 A1 A3 A2 A4 A4 A2 A3A1

Figure 3.

Note that there are no pictures like

Figure 4.

because such pictures give rise to equivalent algebraic statistical models to the exhibited trees.
We consider that parent F first gives rise to A1 and E, and then E gives rise to A2 and G

and G gives rise to A3 and A4, as well as the equivalent (by the discussion above) scenarios.
The resulting algebraic statistical model is

Σ12,34 := σ4(Seg(PA1 × PA2 × P(A3⊗A4)) ∩ σ4(Seg(P(A1⊗A2) ∩ PA3 × PA4))

Similarly we get the other two possibilities

Σ13,24 := σ4(Seg(PA1 × PA3 × P(A2⊗A4)) ∩ σ4(Seg(P(A1⊗A3) ∩ PA2 × PA4))

and

Σ14,23 := σ4(Seg(PA1 × PA4 × P(A2⊗A3)) ∩ σ4(Seg(P(A1⊗A4) ∩ PA2 × PA3))

Note that these three are isomorphic as projective varieties, but are situated differently in
P(A1⊗A2⊗A3⊗A4), thus having defining equations for them would enable one to test between
different evolutionary possibilities. An essential result of [6] is:

Once one has defining equations for σ4(Seg(P
3 ×P

3 ×P
3)), one can obtain defining equations

for all algebraic statistical models corresponding to bifurcating phylogenetic trees.

The proof relies on two results. First, no matter how many species one observes, because of
the structure of the evolutionary trees, the resulting algebraic statistical model is an intersection
of fourth secant varieties of Segre varieties corresponding to summing over the four outcomes on
a hidden variable. The second ([6], Theorem 11) is equivalent to (and arrived at independently
of) Proposition 12.2.2 below, which in particular reduces the study of the fourth secant variety
of any triple Segre product to the study of σ4(Seg(P

3 × P
3 × P

3)).

5.3. Entanglement and quantum computing. In quantum computing (see, e.g., [8] and
the numerous references therein) a pure state corresponds to a point of P(C2⊗ · · · ⊗ C

2) where
there are N copies of C

2. A product state corresponds to a point of Seg(P1 × · · · × P
1) ⊂

P(C2⊗ · · · ⊗ C
2). A pure state is entangled if it is not a product state, and quantum computing

is based on exploiting entangled states. A perhaps overly optimistic program is to classify
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the U(2) × · · · × U(2) and/or SL(2,C) × · · · × SL(2,C) orbits in C
2⊗ · · · ⊗ C

2, which would
give a complete classification of entangled states. Failing that, one is interested in finding
specific measures of entanglement. One measure of entanglement is called the Schmidt measure,
introduced in [26]. In the language of this paper, the Schmidt measure of a tensor is the base two
log of its rank. In [25] they observe that a tensor of a given Schmidt measure might be a limit
of tensors of a lower Schmidt measure, in fact they give the explicit example of (2.2.1) in their
equation (19), where their |1, 0, 0 > corresponds to a1⊗b1⊗c1 in (2.2.1). In [25] they decompose
C

2⊗C
2⊗C

2\0 into the union of four disjoint components which they label S,B,W,GHZ. In the
language of this paper, the components are

S = Ŝeg(P2 × P
2 × P

2)\0 = Ŝeg(PA × PB × PC)\0,

B = {Ŝeg(PA× P(B⊗C) ∪ Ŝeg(P(A⊗B) × PC) ∪ Ŝeg(P(A⊗C) × PB)}\{0 ∪ S},

W = τ̂(Seg(PA × PB × PC))\{0 ∪ S ∪B}

GHZ = C
2⊗C

2⊗C
2\{0 ∪ S ∪B ∪W}.

Compare B with the discussion of flattenings in §12.
There is a vast literature regarding entanglement and there does not appear yet to be a

consensus regarding what is the best way to measure entanglement, but it is clear that secant
varieties of Segre varieties and related auxiliary varieties are relevant for the problem.

6. Strassen’s equations and lower bounds for rank and border rank

In this section we introduce Strassen’s equations and use them to give a new proof of Bläser’s
5
2 -theorem. In §10 we rephrase the equations invariantly and give generalizations.

6.1. Strassen’s equations. Let A,B,C be vector spaces respectively of dimensions a,b, c.

Theorem 6.1.1 (Strassen [52]). Let 3 ≤ a ≤ b = c ≤ r. Let T ∈ σr(Seg(PA× PB × PC)) and
α ∈ A∗ be such that Tα := T (α) ∈ B⊗C, considered as a map Tα : C∗ → B, is of full rank. For
each α1, α2 ∈ A∗, define the linear map Tα,αj : B → B by Tα,αj = TαjTα

−1. Then

Rank[Tα,α1 , Tα,α2 ] ≤ 2(r − b)

where [S, T ] = ST − TS is the commutator of endomorphisms.

Theorem 6.1.1 enables us to prove part of Theorem 3.8.2:

Corollary 6.1.2 (Strassen [52]). σ4(Seg(P
2 × P

2 × P
2)) 6= P(C3⊗C

3⊗C
3).

Proof of corollary. For generic T ∈ A⊗B⊗C = C
3⊗C

3⊗C
3 and α,α1, α2 ∈ A∗, one has Rank([Tα,α1 , Tα,α2 ]) =

3 but for points in σ4(Seg(PA × PB × PC)), the rank is at most two. �

An easy calculation with Terracini’s lemma (9.2.1) shows that σ4(Seg(P
2×P

2×P
2)) is at least

a hypersurface, so the above corollary shows it is exactly a hypersurface. Strassen’s equations
are not presented as polynomials above. In §10 we describe them as polynomials and give
generalizations.

Recall that matrix multiplicationMm,m,m corresponds to a point inA⊗B⊗C whenA∗, B∗, C ≃

C
m2

.

Corollary 6.1.3 (Strassen [52]). R(Mm,m,m) ≥ 3m2

2 .

Proof. Write out Mm,m,m explicitly in a good basis and takes a generic α ∈ A∗ = Matm×m.
Then the corresponding linear map Tα is a block diagonal matrix with blocks of size m, each
block identical and the entries of the block arbitrary. So we have Rank([Tα,α1 , Tα,α2 ]) = m2.

Hence m2 ≤ 2(r −m2) and the result follows. �
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6.2. Proof of Bläser’s lower bound. Here is a proof of Theorem 3.8.4 that uses Theorem
6.1.1, which is implicit, but hidden, in the original proof.

Lemma 6.2.1. Let U be a vector space, let P ∈ SdU∗\0. Let u1, . . . , un be a basis of U . Then
there exists a subset ui1, . . . , uis of cardinality s ≤ d such that P |〈ui1

,...,uis〉
is not identically

zero.

The proof is an easy exercise. Let Matm×m denote the vector space of m×m matrices.

Lemma 6.2.2. Given any basis of Mat∗m×m, there exists a subset of at least m2 − 3m basis
vectors that annhilate elements Id, x, y ∈Matm×m such that [x, y] := xy−yx has maximal rank
m.

Proof. Let A = Matm×m ≃ U∗⊗W . Fixing a basis of A∗ is equivalent to fixing its dual basis of
A. By Lemma 6.2.1 with P = det, we may find a subset S1 of at most m elements of our basis
of A with some z ∈ Span(S1) with det(z) 6= 0. We use z : U → W to identify U ≃ W which
enables us to now consider A as an algebra with z playing the role of the identity element.

Now let a ∈ A be generic. Then the map ad(a) : A → A, x 7→ [a, x] will have a one-
dimensional kernel. By letting P = ad(a)∗(det) and applying Lemma 6.2.1 again, we may find
a subset S2 of our basis of cardinality at most m such that there is an element x ∈ A such that
ad(a)(x) is invertible. Note that ad(x) : A → A also is such that there are elements y with
ad(x)y invertible. Thus we may apply Lemma 6.2.1 a third time to find a cardinality at most m
subset S3 of our basis such that ad(x)y is invertible. Now in the worst possible case our three
subsets are of maximal cardinality and do not intersect, in which case we have a cardinality
m2 − 3m subset of our dual basis that annihilates z = Id, x, y with Rank([x, y]) = m. �

Proof of Theorem 3.8.4. Let φ denote a computation of M = Mm,m,m of length r. Since
Lker(M) = 0 (that is, ∀a ∈ A\0, ∃b ∈ B such that M(a, b) 6= 0) we may write φ = ψ1 + ψ2

with R(ψ1) = m2, R(ψ2) = r − m2 and Lker(ψ1) = 0. Now consider the m2 elements of A∗

appearing in ψ1. Since they span A∗, by Lemma 6.2.2 we may choose a subset of m2 − 3m of
them that annhilate Id, x and y, where x, y are such that [x, y] has full rank. Let φ1 denote
the sum of all monomials in ψ1 whose A∗ terms annhilate Id, x, y, so R(φ1) ≥ m2 − 3m. Let
φ2 = ψ1 − φ1 + ψ2.

Now apply Theorem 6.1.1 with T = φ2, α = Id, α1 = x, α2 = y to get R(φ2) ≥
1
2rank[x, y] +

m2 = 3
2m

2 and thus R(φ1 + φ2) ≥
5
2m

2 − 3m. �

7. Limits of secant planes

There are several reasons for studying points on σr(Seg(PA1 × · · · × PAn)) that are not on
secant P

r−1’s. First, in order to prove that a set of equations E is a set of defining equations for
σr(Seg(PA1×· · ·×PAn)), one must prove that any point in the zero set of E is either a point on
a secant P

r−1 or on a limit P
r−1. For example, the proof of the set-theoretic GSS conjecture (see

§12) in [37] proceeded in this fashion. Second, to establish lower bounds for the border rank of
a given tensor, e.g., matrix multiplication, one could try to first prove that it cannot lie on any
secant P

r−1 and then that it cannot lie on any limiting P
r−1 either. This was the technique of

proving that R(M2,2,2) = 7 in [36]. Finally, a central ingredient for writing explicit approximate
algorithms for matrix multiplication is to exploit certain limiting P

r−1’s discussed below.
This section is only used in section 8 and §8 is not used in the remainder of the article so both

this section and §8 can be skipped by readers primarily interested in the equations of secant
varieties of Segre varieties.

7.1. Limits for arbitrary projective varieties. Let X ⊂ PV be a projective variety. In this
subsection we give a coarse description of the different types of points in σr(X). Let σ0

r(X)
denote the set of points on σr(X) that lie on a secant Pr−1, that is [p] ∈ σr(X) for which
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there exists [x1], . . . , [xr] ∈ X such that p ∈ 〈x1, . . . , xr〉, where 〈x1, . . . , xr〉 denotes the span of
x1, . . . , xr ∈ V . We work inductively, so we assume we know the nature of points on σr−1(X)
and study points on σr(X)\(σ0

r (X) ∪ σr−1(X)).
It is convenient to study the limiting r-planes as points on the cone over the Grassmannian in

its Plucker embedding, G(r, V ) ⊂ P(ΛrV ) (see the end of §4.1). That is, we consider the curve of
r planes as being represented by x1(t)∧· · ·∧xr(t) and examine the limiting plane as t→ 0. (There
must be a unique such plane as the Grassmannian is compact.) Points whose X-rank is larger
than their X-border rank must belong to such limiting planes. The approximate algorithms
in §8 utilize these special points in σr(X) when X = Seg(PA × PB × PC). The algorithm of
Example 8.1.1 below uses a point of the form (7.1.1) below, the algorithm of Example 8.1.3 uses
a point of the form (7.1.3) below, and Algorithm 8.2 in [48] uses a point that is obtained after
taking twenty derivatives!

Let [p] ∈ σr(X). Then there exist curves x1(t), . . . , xr(t) ⊂ X̂ with p ∈ limt→0〈x1(t), . . . , xr(t)〉.
We are interested in the case when dim〈x1(0), . . . , xr(0)〉 < r. Use the notation xj = xj(0).
Assume for the moment that x1, . . . , xr−1 are linearly independent. Then we may write xr =
c1x1+· · ·+cr−1xr−1 for some constants c1, . . . , cr−1. Write each curve xj(t) = xj+tx

′
j+t

2x′′j +· · ·
where derivatives are taken at t = 0.

Consider the Taylor series

x1(t) ∧ · · · ∧ xr(t) =(x1 + tx′1 + t2x′′1 + · · · ) ∧ · · · ∧ (xr−1 + tx′r−1 + t2x′′r−1 + · · · ) ∧ (xr + tx′r + t2x′′r + · · · )

= t((−1)r(c1x
′
1 + · · · cr−1x

′
r−1 − x′r) ∧ x1 ∧ · · · ∧ xr−1) + t2(...) + · · ·

If the t coefficient is nonzero, then

(7.1.1) p ∈ 〈x1, . . . , xr−1, (c1x
′
1 + · · · cr−1x

′
r−1 − x′r)〉.

If the t coefficient is zero, then c1x
′
1 + · · · + cr−1x

′
r−1 − x′r = e1x1 + · · · er−1xr−1 for some

constants e1, . . . , er−1. In this case we must examine the t2 coefficient of the expansion. It is

(7.1.2) (

r−1
∑

k=1

ekx
′
k +

r−1
∑

j=1

cjx
′′
j − x′′r) ∧ x1 ∧ · · · ∧ xr−1

and in this case

(7.1.3) p ∈ 〈x1, . . . , xr−1, (

r−1
∑

k=1

ekx
′
k +

r−1
∑

j=1

cjx
′′
j − x′′r)〉.

One continues to higher order terms if this is zero.

7.2. Limits for Segre varieties. A general curve on Ŝeg(PA × PB × PC) is of the form
x(t) = a(t)⊗b(t)⊗c(t) where a(t), b(t), c(t) are respectively arbitrary curves in A\0, B\0, C\0
with a(0) = a etc. We have x′ = a′⊗b⊗c + a⊗b′⊗c + a⊗b⊗c′ where a′, b′, c′ are respectively
arbitrary elements of A,B,C, and higher order derivatives are obtained similarly.

While the easiest way to obtain r points that are linearly dependent in the limit is to have
two points limit to the same point, this turns out to be not as useful for upper bound algorithms
as more subtle limits. On the other hand, when r is sufficiently small, any other type of limit
involves exploiting the geometry of the Segre variety as we now explain.

To simplify the situation, we work inductively and just look at “primitive” cases, that is,
require that the points on the limiting P

r−1 do not lie on σr(Seg(PA
′ × PB′ × PC ′)) where

dimA′ ≤ dimA etc... (with at least one inequality strict), and moreover that the points do not
lie on σr−1(Seg(PA× PB × PC)).

For example, for the two factor Segre Seg(PA×PB), (which, if we are working by induction,
must be studied for the three factor case, as it corresponds to the case dimC ′ = 1), in order
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to have x1, . . . , xr ∈ Seg(PA × PB) such that dim〈x1, . . . , xr〉 < r − 1 and the points are not
contained in some Seg(PA′ × PB′), we must have dimA + dimB ≤ r (see the erratum to
[36]). In the erratum to [36] we determine all possible x1, . . . , x6 ∈ Seg(P3 × P

3 × P
3) with

dim〈x1, . . . , x6〉 < 6. The only possible cases where the points fail to lie in some Seg(P0 ×PB×
PC) occur when they all lie in some Seg(P2 × P

2 × P
2).

A basic property of projective space is that if Xn ⊂ P
n+a is a subvariety, then a general P

a

will intersect X in deg(X) points. (In fact this is the definition of the degree of X.) One can
calculate that deg(Seg(P2 × P

2)) = 6 (see, e.g., [29], lecture 18) and codim(Seg(P2 × P
2)) = 4.

Therefore, for any set of 5 points on Seg(P2 × P
2) that are linearly independent, that is, that

span a P
4, there is a sixth point in the P

4 that also lies on the Segre. Taking the span of these six
points as our xi(0), we get a limit set that allows the use of derivatives. This type of limit set is
used several times in Example 8.1.3 to build Schönhage’s approximate algorithm for multiplying
3 × 3 matrices using 21 multiplications.

Similarly, deg(Seg(P1 × P
1 × P

1)) = 6 and codim(Seg(P1 × P
1 × P

1)) = 4, which is exploited
in Example 8.1.1.

8. Upper bounds

We now discuss how to use the geometry discussed above to find explicit approximate algo-
rithms for executing a bilinear map.

8.1. Schönhage’s results. Schönhage [48] isolated a common aspect to certain approximate
algorithms for matrix multiplication which enabled him to generalize them and establish upper
bounds for the exponent of matrix multiplication without even having explicit approximate
algorithms. The essence of his idea is as follows:

Say we have two bilinear maps f : U∗ × V ∗ → W and g : Ũ∗ × Ṽ ∗ → W̃ . Under certain
conditions, R(f ⊕ g) < R(f) + R(g), where f ⊕ g : (U ⊕ Ũ)∗ × (V ⊕ Ṽ )∗ → (W ⊕ W̃ ).

We explain how to obtain an approximate algorithm for f ⊕ g that occurs as a point p as
in (7.1.3). Let A = U ⊕ Ũ , B = V ⊕ Ṽ , C = W ⊕ W̃ , recall from §7.2 that curves xj(t) on

Ŝeg(PA× PB × PC) are of the form aj(t)⊗bj(t)⊗cj(t).
We first require that the aj(0) be the U vectors needed to execute f , and the aj(0)

′ = 0, and

the aj(0)
′′ be the Ũ vectors needed to execute g. For the vectors of B, we take the bj(0) to be

the V vectors needed for f and the bj(0)
′ the Ṽ vectors needed for g, and the C limits are of

the same nature as the B limits. Then the sum of the second derivatives will be f ⊕ g.
The only problem is, as explained in §7, we need the zero-th and first order terms to be

linearly dependent so that we are allowed to take the sum of the second derivatives. To obtain
linear dependence, the points must lie in some degenerate position with respect to the Segre,
but this is difficult to arrange. Schönhage’s solution is to have these limit points in a two factor
Segre (where it is easier to have degenerate limits), but this forces one of each U, V,W and

Ũ , Ṽ , W̃ to be one-dimensional. Moreover, these restrictions only take care of the zero-th order
term. To get the first order term killed, two of e.g., Ũ , Ṽ , W̃ are taken to be of dimension one
and the third, say W̃ to be of dimension roughly dimU dimV (assuming dimW = 1). Even
so, we still must add in a few extra terms to insure linear dependence, but they are small in
number. Schönhage points out that in this situation it is known that neither of the f, g admits
an approximate algorithm better than the standard algorithm. A more geometric understanding
of this “trick” could lead to better upper bounds. What follows are two examples for matrix
multiplication, the second of which follows the above scheme.

Example 8.1.1 (Bini et. al.). An approximate algorithm for multiplying 2× 2 matrices where
the first matrix has a zero in the (2, 2) slot is presented in [9]. In what follows we show how
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the algorithm corresponds to a point of σ5(Seg(P
2 × P

3 × P
3)). (It is relatively simple to

pass back and forth between the algorithms and the description of the limiting P
4 that lies in

σ5(Seg(P
2 × P

3 × P
3)) that the tensor lies on. But the description of the P

4 shows the non-
uniqueness of the algorithm and the salient geometric facts that are used more transparently.)
In this case we have 5 points that are linearly dependent. In fact only four are needed, one can
take any 5-th point in the span of the four and ignore it as its derivatives are not needed for the
algorithm. We take

x1 = α1
2⊗β

1
2⊗c

1
2, x2 = α2

1⊗β
1
1⊗c

1
1, x3 = α1

2⊗β
1
2⊗(c11 + c12), x4 = α2

1⊗(β1
1 + β1

2)⊗c11.

Note that all these points lie on a Seg(P1 × P
1 × P

1). Because codim(Seg(P1 × P
1 × P

1)) = 4,
we are assured there is a fifth point of Seg(P1 × P

1 × P
1) in the span of these four. (A general

P
3 will intersect Seg(P1 × P

1 × P
1)) in deg(Seg(P1 × P

1 × P
1)) = 6 points.) Moreover, the 5-th

point will not be in the span of any three of x1, . . . , x4. Then taking

x′1 = α1
1⊗β

1
2⊗c

1
2 + α1

2⊗β
2
2⊗c

1
2 − α1

2⊗β
2
1⊗c

1
2, x′2 = α1

1⊗β
1
1⊗c

1
1 + α2

1⊗β
1
1⊗c

2
1 − α2

1⊗β
1
1⊗c

2
2,

x′3 = α1
2⊗β

2
1⊗(c11 + c12), x

′
4 = α2

1⊗(β1
1 + β1

2)⊗c22,

our matrix multiplication operator M for the partially filled matrices is M = x′1 + x′2 + x′3 + x′4.
The fact that we didn’t use any of the initial points is not suprising as the derivatives can always
be altered to incorporate the initial points.

A splitting of the computation is the key to the reduction here as well. Split the calculation
of M into two pieces, the terms involving α1

1 and the rest. Those terms involving α1
1 can be

accomplished using two multiplications and the rest can be accomplished using six. We change
notation slightly and write xj = aj⊗bj⊗cj and x′j = a′j⊗bj⊗cj + aj⊗b

′
j⊗cj + aj⊗bj⊗c

′
j as we

did before we began this example. The elements of B⊗C appearing with α1
1 each appears in

the original x1, x2, so in order to have them appear in the final tensor we just need to take
a′1, a

′
2 = α1

1. Now to have the terms involving α1
2, α

2
1 appear in the final tensor, we need to

differentiate the terms on the B and C factors. We can obtain two of these by setting b′1 = β2
2

and c′2 = c21. We can get the remaining terms using x′3 and x′4 but we must introduce an
error, which can then be absorbed by modifying b′1 and c′2. The result is that a′1 = a′2 = α1

1,
b′1 = β2

2 − β2
1 , c′2 = c21 − c22, b

′
3 = β2

1 , c′4 = c22 and all the other first derivatives are zero.

Remark 8.1.2. There is a similarity between this example and the algorithms using multiplicative
complexity discussed in §14.1.1.

Example 8.1.3 (Schönhage). Consider matrix multiplication of 3 × 3 matrices where in the
first matrix α2

1 = α3
1 = 0, in the second matrix β2

2 = β2
3 = β3

2 = β3
3 = 0, and thus in the third,

c22 = c23 = c32 = c33 = 0. We again split the computation into terms involving α1
1 and those that

do not. (It might be useful to think of this multiplication as B × C → A to make it look more
symmetric.) Those that do not involve α1

1 use 6 multiplications in the näıve algorithm and those
involving α1

1 use four.
As explained in §7.2, P

4∩(Seg(P2×P
2)) will generally consist of 6 = deg(Seg(P2×P

2)) points.
Now the principle described above is used. That is, the initial 6 terms contain the correct six
monomials in the B,C factors for the terms without α1

1 and the second derivatives of the A
factor in these terms are used to provide the correct A terms, while the original A factor term is
always α1

1 and it is paired with the derivatives in the B,C factors of the original terms. In this
example, the spaces in B,C where the two different pieces live are nearly disjoint, so we need
to differentiate twice to be able to get both the B and C coefficients new (which is why we used
second, rather than first derivatives in the A-factor).
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What is interesting about this example is that taking three such blockings, one can “cover”
the space of three by three matrices, and adding them together obtain an approximate algorithm
for M3,3,3 using 21 multiplications.

8.2. Finite group approach to upper bounds. H. Cohn and C. Umans [23] have proposed a
different approach to constructing algorithms for matrix multiplication using the discrete Fourier
transform and the representation theory of finite groups.

Let G be a finite group and C[G] its group algebra. (See e.g., [49] for definitions and properties

of the group algebra.) The discrete Fourier transform (DFT) D : C[G] → C
|G| is an invertible

linear map that actualizes Wedderburn’s theorem that C[G] ≃Matd1×d1
(C)×· · ·×Matdk×dk

(C),
where G has k irreducible representations and the dimension (character) of the j-th is dj. (See
e.g., [14] for an exposition.) Thus multiplication in the group ring is converted to multiplication
of d1 × d1, . . . , dr × dr matrices.

The idea is, to multiply Matn×m×Matm×p →Matn×p one first bijectively maps bases of each
of these three spaces into subsets of some finite group G. The subsets are themselves formed
from three subsets S1, S2, S3, of cardinalities n,m, p which have a disjointness property, called
the triple product property in [23]: if s1s2s3 = Id, with si ∈ Si

−1Si, then each si = Id. Then
the maps are to the three subsets S1

−1S2, S2
−1S3, S1

−1S3. The triple product property enables
one to read off matrix multiplication from multiplication in the group ring. They then show, if
ω is the exponent of matrix multiplication, that, if one can find such a group and subsets, then

(nmp)
ω
3 ≤ dω−2|G|

where d is the largest character of G. So one needs to find groups that are big enough to support
triples satisfying the triple product property but as small as possible and with largest character
as small as possible.

In [22] they give explicit examples which recover ω < 2.41 and state several combinatorial
and group theoretic conjectures that, if true, would imply ω = 2.

9. Dimensions of secant varieties of Segre varieties

The most basic invariant of an algebraic variety is its dimension. In this section we discuss
the standard tool for computing dimensions of secant varieties of projective varieties and its
application to secant varieties of Segre varieties. The results of this section are not used in the
following sections.

9.1. Dimensions of secant varieties of Segre varieties and matrix multiplication. Let
A,B,C be vector spaces of dimensions a,b, c. By Remark 3.4, the expected dimension of
σr(Seg(PA×PB×PC)) is r(a− 1+b− 1+ c− 1)+ r− 1 = r(a+b+ c− 2)− 1. The dimension
of the ambient space is abc − 1, so we expect σr(Seg(PA × PB × PC)) to fill P(A⊗B⊗C) as
soon as r(a + b + c− 2) − 1 ≥ abc− 1, that is,

(9.1.1) r ≥
abc

a + b + c− 2
.

Note that in the case a = b = c equation (9.1.1) becomes r ≥ a3/(3a − 2) ≃ a2/3. Taking
a = n2, the right hand side of (9.1.1) is roughly n4/3, showing already that matrix multiplication
is far from being a generic bilinear map, as even the standard algorithm gives R(Mn,n,n) ≤ n3.
(The actual typical X-rank cannot be smaller than the expected typical X-rank.) However for
n = 2 we obtain r ≥ 64/10 and thus r = 7 is expected to (and we will see below does) fill, so
M2,2,2 is generic in this sense.
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9.2. Terracini’s lemma and applications. Recall the notations from the beginning of §3.3
and adopt the additional notation that for Z ⊂ PV , T̂[z]Z = TzẐ ⊂ V is the embedded tangent

space to Ẑ at z ∈ Ẑ.

Lemma 9.2.1 (Terracini’s Lemma (see, e.g., [21, 33, 60]) ). If [x] ∈ J(Y,Z)smooth with [x] =
[y + z], such that [y] ∈ Y smooth, [z] ∈ Zsmooth, then

T̂[x]J(Y,Z) = T̂[y]Y + T̂[z]Z.

Thus, if [p] = [x1 + · · · + xr] ∈ σr(X)smooth with [xj] ∈ Xsmooth, then

T̂[p]σr(X) = T̂[x1]X + · · · + T̂[xr]X.

Terracini’s lemma implies that for a variety X ⊂ PV , if any given σr(X) is of the expected
dimension r dimX + r − 1, then all σr′(X) for r′ < r are of the expected dimension.

Thus if dim PV = p(n− 1) + p− 1 and one shows σp(X) = PV , then all secant varieties of X
are of the expected dimension.

The following trick occurs frequently in the literature: let Y1, . . . , Yp ⊂ X, so T̂y1
Y1 + · · · +

T̂ypYp ⊆ T̂[y1+···+yp]σp(X). If one can show T̂y1
Y1 + · · ·+ T̂ypYp = V , one has shown σp(X) = PV .

Lickteig and Strassen show that for X = Seg(PA × PB × PC), remarkably just taking the Yi

to be the Segre itself at most three times and taking other the Yi to be linear spaces in it is
sufficient for certain cases:

Lemma 9.2.2 (Lickteig [44]). Adopt the notation PAi = P(A⊗bi⊗ci) ⊂ Seg(PA × PB × PC),
PBj = P(aj⊗B⊗c′j) ⊂ Seg(PA× PB × PC).

(1) We may choose points a1, . . . , as ∈ A, b1, . . . , bq ∈ B, c1, . . . , cq, c
′
1, . . . , c

′
s ∈ C, such that

Ĵ(PA1, . . . ,PAq,PB1, . . . ,PBs) = A⊗B⊗C

when q = bl1, s = al2 and c = l1 + l2 and when a = b = 2, q + s = 2c, s, q ≥ 2.
(2) We may choose points a1, . . . , as ∈ A, b1, . . . , bq ∈ B, c1, . . . , cq, c

′
1, . . . , c

′
s ∈ C, such that

Ĵ(σ2(Seg(PA× PB × PC)),PA1, . . . ,PAq,PB1, . . . ,PBs) = A⊗B⊗C

when q + s+ 2 = c and a = b = 2.
(3) We may choose points a1, . . . , as ∈ A, b1, . . . , bq ∈ B,

c1, . . . , cq, c
′
1, . . . , c

′
s ∈ C, such that

Ĵ(σ3(Seg(PA× PB × PC)),PA1, . . . ,PAq,PB1, . . . ,PBs) = A⊗B⊗C

when q = s = c − 2 ≥ 2 and a = b = 3.

Using Lemma 9.2.2, Lickteig shows

Theorem 9.2.3 (Lickteig [44]). σr(Seg(PA × PB × PC)) is non-degenerate for all r whenever
a ≤ b ≤ c, b, c are even and abc/(a + b + c − 2) is an integer.

With a little more work Lickteig obtains Theorem 3.8.1.

A classical technique for showing a secant variety of any variety X ⊂ PV is degenerate is
to find a variety Y ⊂ PV , with X ⊂ Y , with σk(Y ) very degenerate. Then, if X “catches
up” that is, if there exists r such that σr(X) = σr(Y ), then σt(X) = σt(Y ) for all t > r as
well. (See, e.g. [19] for a recent application.) To see this, first note that for u < r, σr(X) =
J(σr−u(X), σu(X)) ⊆ J(σr−u(Y ), σu(X)) ⊆ σr(Y ), so σr(Y ) = J(σr−u(Y ), σu(X)). Now write
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t = mr + u,

σt(X) = J(σmr(X), σu(X))

= J(σ(m−1)r(Y ), σu(Y ), J(σr−u(Y ), σu(X)))

= σmr+u(Y ).

In particular, since σr(Seg(PA × PB)) is very degenerate, if we have a three factor case that
is “unbalanced” in the sense that one space is much smaller than the others, it can catch up to a
corresponding two factor case. For example σ2(Seg(P

1 × P
1 × P

3)) = σ2(Seg(P(C2⊗C
2)× P

3)).
Note that when this catching up occurs, if one knows the ideal of the a priori larger variety, one
obtains the ideals of the secant varieties of the smaller variety. Other uses of auxiliary varieties
to understand the secant varieties of Segre varieties, are discussed in in §12.

In the past few years there have been several papers on the dimensions of secant varieties of
Segre varieties, e.g., [17, 16, 15, 19, 1]. These papers use methods similar to those of Strassen
and Lickteig, but the language is more geometric (fat points, degeneration arguments). Some
explanation of the relation between the algebreo-geometric and tensor language is given in [1].

With such steady progress, it seems reasonable to hope for a complete solution for the secant
defectivity of Segre varieties in the near future, at least in the three factor case.

10. Invariant description of Strassen’s equations and generalizations

In this section we first rephrase Strassen’s equations as the image of a GL(A) × GL(B) ×
GL(C)-equivariant map. We use this rephrasing to describe how to explicitly write a basis of
his equations in a “good” basis and to generalize his equations. To ease the reader into this
perspective, we begin with a familiar case.

10.1. Warm up: Invariant description of generators of the ideal of σr(Seg(PA× PB)).
The set of a×b matrices of rank at most r is the zero set of the (r+ 1)× (r+ 1) minors, in fact
these minors generate the ideal of σr(Seg(PA × PB)). To understand this space of equations
invariantly, we begin with two by two minors. Choose bases {ai} of A, {bs} of B and write our
resulting matrix representing a point of A⊗B as x = (xi

s), that is, x =
∑

i,s x
i
sai⊗bs. Consider

the minor Pij,st := xi
sx

j
t − xi

tx
j
s ∈ S2(A⊗B)∗. Note that Pij,st = −Pji,st and Pij,st = −Pij,ts.

Hence Pij,st ∈ Λ2A∗⊗Λ2B∗, and in fact we have an injective map

Λ2A∗⊗Λ2B∗ → S2(A⊗B)∗

whose image is the space of 2 × 2 minors. By the same reasoning, there is an injective map
ΛdA∗⊗ΛdB∗ → Sd(A⊗B)∗ with image the d× d minors. We conclude

The ideal of σr(Seg(PA × PB)) is generated by Λr+1A∗⊗Λr+1B∗ ⊂ Sr+1(A⊗B)∗.

We will see in §11 that Λr+1A∗⊗Λr+1B∗ is an irreducible GL(A) × GL(B)-submodule of
Sr+1(A⊗B)∗. A more precise goal than “finding equations for secant varieties of Segre varieties”
is to find the irreducible modules generating their ideals. When we discuss finding invariant
descriptions of sets of equations, ultimately we will mean as modules, but in the interim, we
can simply mean “without reference to choices of bases”, such as we have done here for the
(r + 1) × (r + 1) minors.

10.2. Strassen’s equations reconsidered. In order to understand Strassen’s equations in-
variantly, we would like to get rid of the choices of α,α1, α2, and the requirement that α is such
that T (α) be invertible in Theorem 6.1.1. In what follows we will deal with tensors instead
of endomorphisms, composition of endomorphisms will correspond to contractions of tensors,
and the commutator of two endomorphisms will correspond to contracting a tensor in two
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different ways and taking the difference of the two results. Note that matrix multiplication
M : (U∗⊗V ) × (V ∗⊗W ) → U∗⊗W itself is simply the contraction of V with V ∗,

A linear map f : V → W induces linear maps f∧k : ΛkV → ΛkW . If dimV = dimW = n
then, letting det(f) := f∧n, we have f∧n−1 = f−1⊗det(f), which follows from the canonical
identification Λn−1V ≃ V ∗⊗ΛnV .

The punch line of this section is:
Strassen’s equations correspond to the image of the composition of the inclusion

Λ2A⊗Sb−1A⊗ΛbB⊗B⊗ΛbC⊗C → (A⊗B⊗C)b+1

with the projection

(A⊗B⊗C)b+1 → Sb+1(A⊗B⊗C).

We remark that the composition of these two maps is not injective. In §11.2 we describe
the image precisely. We emphasize this perspective because it leads to vast generalizations of
Strassen’s equations discussed in §10.4.

Given T ∈ A⊗B⊗C, recall our notation Tα ∈ B⊗C from §6.1. We have T∧b−1
α ∈ Λb−1B⊗Λb−1C =

Λb−1B⊗C∗⊗ΛbC. We may wedge the Λb−1B and B factors in

T∧b−1
α ⊗Tαj ∈ Λb−1B⊗C∗⊗ΛbC⊗B⊗C

together to obtain an element

Tα
αj ∈ ΛbB⊗C∗⊗ΛbC⊗C = C∗⊗C⊗ΛbB⊗ΛbC.

That is, up to tensoring with a one-dimensional vector space, we have a linear maps C → C
and can now take their commutators. Consider

Tα
α1⊗T

α
α2 ∈ (ΛbB⊗C∗⊗ΛbC⊗C)⊗2 = C∗⊗C⊗C∗⊗C⊗(ΛbB)⊗2⊗(ΛbC)⊗2

and contract a copy of C from Tα
α1 with a copy of C∗ from Tα

α2 to obtain an element of

C∗⊗C⊗(ΛbB)⊗2⊗(ΛbC)⊗2. This contraction corresponds to the matrix multiplication of Tα
α1

with Tα
α2

. And reversing the roles of Tα
α1 , T

α
α2 reverses the order of the matrix multiplication.

Thus the difference of these two contractions is

[Tα
α1 , T

α
α2 ] ∈ C∗⊗C⊗(ΛbB)⊗2⊗(ΛbC)⊗2

and Strassen’s theorem states that the rank of [Tα
α1 , T

α
α2 ] is at most 2(r − b).

With a little more care, one obtains a lower degree tensor, see [39] for details.

Remark 10.2.1. Strassen’s equations were rediscovered in [6], guided by the geometry of phy-
logenetic trees, which also enabled a nice presentation of them. The recent preprint [45] gives
an even simpler description of Strassen’s equations. Unfortunately the generalizations discussed
below are not yet evident from either of these presentations.

10.3. Explicit polynomials in bases. Here are polynomials corresponding to Strassen’s com-
mutator being of rank at most w: Let α1, α2, α3 be a basis of A∗, β1, . . . , βb, ξ1, . . . , ξb bases of
B∗, C∗. Consider the element

P = α2 ∧ α3⊗(α1)b−1⊗β1 ∧ · · · ∧ βb⊗βs⊗ξ1 ∧ · · · ∧ ξb⊗ξt
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This expands to (ignoring scalars)

(α2⊗α3 − α3⊗α2)⊗(α1)
b−1⊗(

∑

j

(−1)j+1β
ĵ
⊗βj⊗βs)⊗(

∑

k

(−1)k+1ξ
k̂
⊗ξk⊗βt)

= (−1)j+k[((α1)
b−1⊗β

ĵ
⊗ξ

k̂
)⊗(α2⊗βj⊗ξt)⊗(α3⊗βs⊗ξk)

− ((α1)
b−1⊗β

ĵ
⊗ξ

k̂
)⊗(α3⊗βj⊗ξt)⊗(α2⊗βs⊗ξk)].

A hat over an index indicates the wedge product of all vectors in that index range except the
hatted one. If we choose dual bases for A,B,C and write T = a1⊗X + a2⊗Y + a3⊗Z where
the aj are dual to the αj and X,Y,Z are represented as b× b matrices with respect to the dual
bases of B,C, then, let P (T ) be the matrix with

P (T )st =
∑

j,k

(−1)j+k(detX ĵ

k̂
)(Y j

t Z
s
k − Y s

k Z
j
t )

where X ĵ

k̂
is X with its j-th row and k-th column removed. Strassen’s commutator has rank

at most w if and only if all the (w + 1) × (w + 1) minors of P (T ) are zero. It turns out that
when one takes the determinant of P (T ), one gets a reducible polynomial that is divisible by
the determinant of X, so, e.g., when b = 3 one obtains an irreducible polynomial of degree nine
(as opposed to 12).

10.4. Generalizations of of Strassen’s conditions. The key point in the discussion above
was that contracting T in two different ways yielded tensors that commute if T is in σr(Seg(PA

∗×
PB∗ × PC∗). Consider, for s, t such that s+ t ≤ b and α,αj ∈ A∗, the tensors

T∧s
αj

∈ ΛsB⊗ΛsC, T∧t
α ∈ ΛtB⊗ΛtC

(in §10.2 we had s = 1, t = b−1). We contract T∧t
α ⊗T∧s

α1
⊗T∧s

α2
to obtain elements of Λs+tB⊗Λs+tC⊗ΛsB⊗ΛsC

in two different ways, call these contractions ψs,t
α,α1,α2

(T ) and ψs,t
α,α2,α1

(T ).
Now say R(T ) = r so we may write T = a1⊗b1⊗c1 + · · · + ar⊗br⊗cr for elements ai ∈ A,

bi ∈ B, ci ∈ C. We have

ψs,t
α,α1,α2

(T ) =
∑

|I|=s,|J |=t,|K|=s

〈aI , α1〉〈aJ , α〉〈aK , α2〉(bI+J⊗bK)⊗(cI⊗cJ+K),

where aI = ai1 ∧· · ·∧ais ∈ ΛsA, 〈AI , α〉 ∈ Λs−1A and aI+J = aI ∧aJ etc. For this to be nonzero,
we need I and J to be disjoint subsets of {1, . . . , r}. Similarly, J and K must be disjoint. If
s+ t = r this implies J = K. In summary:

Theorem 10.4.1. [39] For T ∈ σs+t(Seg(PA × PB × PC)), for all α,α1, α2 ∈ A∗

ψs,t

α,α1,α2(T ) − ψs,t

α,α2,α1(T ) = 0.

We have the bilinear map

(Λ2(SsA)⊗StA)∗ × (A⊗B⊗C)⊗2s+t → Λs+tB⊗Λs+tC⊗ΛsB⊗ΛsC.

whose image is ψs,t

α,α1,α2(T ) − ψs,t

α,α2,α1(T ). We rewrite it as a polynomial map

Ψs,t : A⊗B⊗C → (Λ2(SsA)⊗StA)⊗Λs+tB⊗Λs+tC⊗ΛsB⊗ΛsC.

So just as with Strassen’s equations, we no longer need to make choices of elements of A∗.
The only catch is we don’t know whether or not Ψs,t is identically zero. In [39] we show many

of the Ψs,t are indeed nonzero and give independent subspaces (in fact independent GL(A) ×
GL(B) ×GL(C)-submodules, see §11) of the ideal of σs+t(Seg(PA × PB × PC)).
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In [39], Corollary 5.6, using the above methods, we show that set-theoretic defining equations
for σ4(Seg(P

3 × P
3 × P

3)), the case of interest for phylogenetic invariants, could be explicitly
determined if one had a complete set of defining equations for σ4(Seg(P

2 × P
2 × P

3)).

11. Representation theory and equations for secant varieties of Segre varieties

As mentioned in the introduction, the most important tool for studying varieties invariant
under a group action is representation theory. In this section we develop the necessary repre-
sentation theory for studying secant varieties of Segre varieties. The theory developed in this
section is also what is needed in the more general study of algebraic statistical models. We first
describe how to decompose the space of polynomials on A1⊗ · · · ⊗ An into subspaces invariant
under the action of the group of changes of bases in the vector spaces, GL(A1)× · · · ×GL(An).
We then describe Strassen’s equations from this perspective and how to find preferred polynomi-
als in each irreducible submodule. We also describe two notions, inheritance and prolongation,
which facilitate our study. Once one has an explicit description of a space of polynomials as
modules, it is algorithmic to write down an explicit basis of the module as we did in §10.1. See
[37, 40] for more details.

11.1. Polynomials come in modules. Since σr(Seg(PA1 × · · · × PAn)) is invariant under
the action of G = GL(A1) × · · · × GL(An) acting on A1⊗ · · · ⊗ An = V , its ideal, which is
a subset of the module ⊕dS

dV ∗, must be as well. Thus we should study the equations of
σr(Seg(PA1 × · · · × PAn)) as G-modules.

Given any G-module W , the first thing to do when studying W is to try to decompose it into
isotypic components (which is always possible when G is reductive, as is our situation). That is,
one can decompose W into a direct sum of irreducible modules, but this is not canonical. The
isotypic decomposition (which is canonical) is obtained from the decomposition into irreducible
submodules by grouping together all copies of isomorphic irreducible submodules.

To decompose SdV ∗ into G-isotypic components we use the Shur-Weyl duality between repre-
sentations of the symmetric group on d letters Sd and the representations of the general linear
group GL(W ). Both groups act on W⊗d: for A ∈ GL(W ) and σ ∈ Sd we respectively have

A.(v1⊗ · · · ⊗ vd) = (A.v1)⊗ · · · ⊗ (A.vd)

σ.(v1⊗ · · · ⊗ vd) = vσ(1)⊗ · · · ⊗ vσ(d)

Schur-Weyl duality is the statement that each group is the commuting subgroup of the other,
that is

Sd = {g ∈ GL(W⊗d) | g.A.(v1⊗ · · · ⊗ vd) = A.g.(v1⊗ · · · ⊗ vd) ∀A ∈ GL(W ),∀v1, . . . , vd ∈W}

and

GL(W ) = {g ∈ GL(W⊗d) | g.σ.(v1⊗ · · · ⊗ vd) = σ.g.(v1⊗ · · · ⊗ vd) ∀σ ∈ Sd,∀v1, . . . , vd ∈W}.

Thus we can use the action of Sd to obtain projection operators W⊗d → W⊗d, whose im-
ages are necessarily GL(W )-submodules. Moreover, the duality assures us that all GL(W )-
submodules may be obtained this way. For example
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SdW = {T ∈W⊗d | σ(T ) = T ∀σ ∈ Sd}

= ImπS : W⊗d →W⊗d where πS(w1⊗ · · · ⊗ wd) =
1

d!

∑

σ∈Sd

wσ(1)⊗ · · · ⊗ wσ(d)

ΛdW = {T ∈W⊗d | σ(T ) = sgn(σ)T ∀σ ∈ Sd}

= ImπΛ : W⊗d →W⊗d where πΛ(w1⊗ · · · ⊗ wd) =
1

d!

∑

σ∈Sd

sgn(σ)wσ(1)⊗ · · · ⊗ wσ(d)}

Let π = (p1, . . . , pf ) be a partition of d, that is, p1 ≥ · · · ≥ pf and p1 + · · · + pf = d. We use
the notations |π| = d and l(π) = f .

The irreducible representations of Sd are indexed by partitions of d; we let [π] denote the
module induced by π. Here [π] may be obtained by a choice of Young symmetrizer cλ corre-
sponding to a choice of a Young tableau associated to π and applying the projection operator
cλ to the group algebra C[Sd]. (For proofs and more details regarding these assertions see, e.g.,
[27], chapter four.)

Define SπW := HomSd
([π],W⊗d), which is an irreducible GL(W )-module. The GL(W )-

isotypic decomposition of W⊗d is W⊗d = ⊕|π|=d[π]⊗SπW . The first factor is a trivial GL(W )-
module so it only serves to tell us the multiplicity of the second, which is dim[π].

We now return to the space we are interested in, V = A1⊗ · · · ⊗ An as a G = GL(A1)× · · · ×
GL(An)-module:

Proposition 11.1.1 ([37]). TheG = GL(A1)×· · ·×GL(An) isotypic decomposition of Sd(A1⊗ · · · ⊗ An)
is

Sd(A1⊗ · · · ⊗ An) =
⊕

|π1|=···=|πk|=d

([π1]⊗ · · · ⊗ [πn])Sd⊗Sπ1
A1⊗ · · · ⊗ Sπk

Ak,

where ([π1]⊗ · · · ⊗ [πk])
Sd denotes the space of Sd-invariants (that is, instances of the trivial

representation of Sd) in [π1]⊗ · · · ⊗[πn].

The ([π1]⊗ · · · ⊗ [πn])Sd factor in the tensor product just serves to tell us the multiplicity of
Sπ1

A1⊗ · · · ⊗ Sπk
Ak, via its dimension.

Proof. We need to decompose Sd(A1⊗ · · · ⊗ An) as a G = GL(A1)× · · · ×GL(An)-module. We
have

(A1⊗ · · · ⊗An)⊗d =
⊕

|πj|=d

([π1]⊗ · · · ⊗[πn])⊗(Sπ1
A1⊗ · · · ⊗ SπnAn)

But Sd(A1⊗ · · · ⊗ An) ⊂ (A1⊗ · · · ⊗ An)⊗d is the set of elements invariant under the action of
Sd. (Here Sd only acts on the [πj ], it leaves the Sπj

Aj ’s invariant.) �

Now we need a way to calculate dim([π1]⊗ · · · ⊗ [πk])
Sd . This can be done using characters

in low degrees (degrees as high as your computer is willing to tolerate). The key point is

dim([π1]⊗ · · · ⊗ [πn])Sd =
1

d!

∑

σ∈Sd

χπ1
(σ) · · ·χπn(σ)

where χπj
: Sd → C is the character of [πj] (see, e.g., [27, 49]). For any given d, one can compute

these dimensions, but there is no known closed form formula for them when n > 2.
Obtaining the above decomposition is essential when dealing with explicit equations. For

example, Strassen has a priori three sets of equations for σ3(P
2 ×P

2 ×P
2). Are they redundant

or not? By examining these equations as modules we find that they are:
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11.2. Strassen’s equations as modules. Recall from §10 that Strassen’s equations for σr(Seg(P
2×

P
b−1 × P

b−1)) in degree b+ 1 are obtained by composing the inclusion

Λ2A⊗Sb−1A⊗ΛbB⊗B⊗C⊗ΛbC → (A⊗B⊗C)b+1

with the projection

(A⊗B⊗C)b+1 → Sb+1(A⊗B⊗C).

Now Λ2A⊗Sb−1A⊗ΛbB⊗B⊗C⊗ΛbC is not an irreducible module. Since the maps are G-
equivariant, by Shur’s lemma the image is a direct sum of irreducible submodules. We need to de-
termine which modules in Λ2A⊗Sb−1A⊗ΛbB⊗B⊗C⊗ΛbC map nontrivially into Sb+1(A⊗B⊗C).

Since here b = dimB = dimC, we have, using a very special case of the Littlewood-Richardson
rule (see, e.g., [27], chapter 6),

(Λ2A⊗Sb−1A)⊗(ΛbB⊗B)⊗(C⊗ΛbC) = (Sb,1A⊕ Sb−1,1,1A)⊗Λb,1B⊗Λb,1C

(where we use the notation Λb,1B = S2,1,...,1B) so there are two possible modules. Were the
first in the image, then one would be able to get equations in the case dimA = 2, but σ3(P

1 ×
P

2 × P
2) = P(A⊗B⊗C), so only the second can occur (and it is easy to check that it does). We

conclude:

Proposition 11.2.1. [39] Strassen’s equations for σb(P
2 × P

b−1 × P
b−1) expressed as a module

is

Sb−1,1,1C
3⊗Λb,1C

b⊗Λb,1C
b,

in particular it is an irreducible module.

When b = 3, we obtain S211A⊗S211B⊗S211C which occurs with multiplicity one in S4(A⊗B⊗C).
Thus, despite the apparently different role of A from B and C, in this case - and only in this
case - exchanging the role of A with B or C yields the same space of equations.

11.3. Highest weight vectors. When we study modules of polynomials, it will be convenient
to have a “best” polynomial in the module. For example, since an irreducible G-module in SdV ∗

is either entirely in or out of the ideal of a G-variety Z ⊂ PV , it is sufficient to check just a single
polynomial in the module. In general, this “best polynomial” is provided by a choice of highest
weight vector. We explain how to obtain such vectors when G = GL(A1) × · · · ×GL(An).

Fix a basis e1, . . . , en of a vector space V . Let W be an irreducible GL(V )-module occurring
in V ⊗d for some d. We say w ∈ W is a highest weight vector for W , if ρ(g).[w] = [w] for all
upper triangular matrices g ∈ GL(V ). (It makes sense to discuss matrices because we have
fixed a basis of V .) Highest weight vectors are in some sense the simplest vectors occurring in a
module. (More precisely, after having fixed bases, the simplest vectors correspond to the vectors
in the orbit of the highest weight vector under the action of the Weyl group.) For example,
when W = SdV , (e1)

d is a highest weight vector. For W = ΛdV , e1 ∧ e2 ∧ · · · ∧ ed is a highest
weight vector. In general the highest weight vector of an irreducible module will not correspond
to a decomposable tensor. In cπV

⊗d (≃ SπV ), the highest weight vector is

cπ(e⊗p1

1 ⊗e⊗p2

2 ⊗ · · · ⊗ e⊗pd

d )

where π = (p1, . . . , pd) and we allow the last few pj to be zero in order to have a uniform
expression.

In [37] we give explicit algorithms for writing down highest weight vectors of submodules of
Sd(A1⊗ · · · ⊗ An).

An important observation for the next section is if v ∈ A⊗d is a highest weight vector for a
submodule corresponding to a partition π and a1, . . . , an is a basis of A, v may be expressed
using only the vectors a1, . . . , al(π).
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11.4. Inheritance. By examining equations grouped into modules, the dimensions of the vector
spaces involved only come into play when verifying that the dimension is large enough to support
a given module. For example, let A1, . . . , An be vector spaces and let aj = dimAj . We have:

Proposition 11.4.1. [39] If a copy of

Sπ1
A1⊗· · ·SπnAn

occurs in

Id(σr(Seg(PA
∗
1 × · · · × PA∗

n))),

then for all vector spaces A′
j ⊇ Aj , the corresponding copy of

Sπ1
A′

1⊗ · · · ⊗SπnA
′
n

occurs in

Id(σr(Seg(PA
′
1
∗
× · · · × PA′

n
∗
))).

Moreover, a module Sπ1
A′

1⊗ · · · ⊗SπnA
′
n where the length of each πj is at most aj is in

Id(σr(Seg(PA
′
1
∗ × · · · × PA′

n
∗))) if and only if the corresponding module is in Id(σr(Seg(PA

∗
1 ×

· · · × PA∗
n)).

Our notation is such that given a variety Z ⊂ PV ∗, I(Z) ⊂ S•V denotes its ideal and
Id(Z) = I(Z) ∩ SdV .

Proof. A module is in the ideal if and only if its highest weight vector is. Choose ordered
bases for A′

j such that the first aj basis vectors form a basis of Aj . Then any highest weight

vector for Sπ1
A′

1⊗ · · · ⊗SπnA
′
n is also a highest weight vector for Sπ1

A1⊗ · · · ⊗SπnAn as long as
l(πj) ≤ aj . �

Thus a copy of a module Sπ1
A1⊗· · · ⊗SπnAn will be in I(σr(Seg(P

r−1 × · · · × P
r−1))) if

and only if the corresponding copy of the module Sπ1
C

l(π1)⊗ · · · ⊗SπnC
l(πn) is in the ideal of

σr(Seg(P
l(π1)−1 × · · · × P

l(πn)−1)).
It is straightforward to determine I3(σ2(Seg(PA1 × · · · × PAn))) as a module:

Theorem 11.4.2 ([37], Theorem 4.7). The space of cubics vanishing on σ2(Seg(PA
∗
1×· · ·×PA∗

k))
is

I3(σ2(Seg(PA
∗
1 × · · · × PA∗

k))) =
⊕

I+J+L={1,...,k},
j=|J |>1, |L|>0

2j−1 − (−1)j−1

3
S3AI⊗S21AJ⊗S111AL

⊕
⊕

I+J={1,...,k},
j=|J |>3

(
2j−1 − (−1)j−1

3
− 1)S3AI⊗S21AJ ⊕

⊕

I+L={1,...,k},
|L|>0 even

S3AI⊗S111AL.

11.5. Prolongation. For A ⊂ SkV define

A(p) = (A⊗SpV ) ∩ Sp+kV,

the p-th prolongation of A. Let Zeros(A) = {[v] ∈ PV ∗ | P (v) = 0 ∀P ∈ A}.
Ideals of secant varieties satisfy a prolongation property, in particular for secant varieties of

intersections of quadrics we have:

Lemma 11.5.1. [38] Let A ⊂ S2V be a linear subspace with zero set Zeros(A) ⊂ PV ∗. Then

Zeros(A(k−1)) ⊇ σk(Zeros(A)).

Moreover, if Zeros(A) is not contained in a hyperplane, then for k ≥ 2, Ik(σk(Zeros(A)) = 0,
and if A = I2(Zeros(A)), then Ik+1(σk(Zeros(A))) = A(k−1).
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Usually, for a variety X ⊂ PV , I(σk(X)) is not generated in degree k + 1. For example,
consider the simplest intersection of quadrics, four points in P

2. They generate six lines so σ(X)
is a hypersurface of degree six.

Let G be a semi-simple Lie or algebraic group, let Vλ be the irreducible G-module of highest
weight λ and let X = G/P ⊂ PV ∗

λ be a homogeneously embedded rational homogeneous variety,
that is, the orbit of a highest weight line. (X = Seg(PA∗

1⊗ · · · ⊗ PA∗
n) ⊂ P(A1⊗ · · · ⊗ An)∗ =

PV ∗ is one such.) By an unpublished theorem of Kostant, I2(X) = (V ∗
2λ)⊥ ⊂ S2Vλ and I(X) is

generated in degree two. More generally, Ik(X) = (V ∗
kλ)⊥ ⊂ SkVλ. We adopt the notation that

if V = Vλ, we write V k = Vkλ. In the Segre case,

V k = SkA1⊗ · · · ⊗ SkAn ⊂ Sk(A1⊗ · · · ⊗ An).

Proposition 11.5.2. [37] Let X ⊂ PV ∗ be a variety not contained in a linear space. Then for
all d > 0, Id(σd(X)) = 0.

IfX = G/P is homogeneous, then Id+1(σd(X)) is the kernel of the contraction map (V 2)∗⊗Sd+1V →
Sd−1V .

Examples illustrating Proposition 11.5.2 are given in [37]. Extensions and further applications
of prolongations are given in [51].

12. Auxiliary varieties

A simple observation is that if X ⊂ Y ⊂ PV , then any polynomial vanishing on Y also
vanishes on X. We want to find polynomials in the ideal of secant varieties of Segre varieties,
so it is natural to look for varieties Y that contain X = σr(PA1 × · · · × PAn) whose ideals we
understand. In this section we give two examples of such varieties Y .

12.1. Flatar and the GSS conjecture. Note that A⊗B⊗C = A⊗(B⊗C), which leads to the
simple observation that σr(Seg(PA × PB × PC)) ⊆ σr(Seg(PA × P(B⊗C))). Moreover, we
explicitly know the generators of the ideal of σr(Seg(PA × P(B⊗C))), see §10.1.

More generally, define the flattening of a tensor T ∈ A1⊗ · · · ⊗ An by letting to let I =
{i1, . . . , ip} ⊂ {1, . . . , n}, J = {1, . . . , n}\I, AI = Ai1⊗ · · · ⊗ Aip , AJ = Aj1⊗ · · · ⊗ Ajn−p

and
consider T ∈ AI⊗AJ .

Let a = A1⊗ · · · ⊗ An and define IF latar
to be the ideal generated by the modules Λr+1A∗

I⊗Λr+1A∗
J ⊂

Sr+1(A1⊗ · · · ⊗ An)∗ as I, J range over complementary subsets of {1, . . . , n}. We let Flatar de-
note the corresponding variety, that is,

Flatar = ∩I,Jσr(Seg(PAI × PAJ)).

We have σr(PA1 × · · · × PAn) ⊆ Flatar .
The GSS conjecture [28] is that equality holds when r = 2. Actually the conjecture is the

stronger statement that Iσ2(PA1×···×PAn) = IF lata
2

. The weaker statement that equality holds as

sets was proven in [37]. It was also shown in [37] that the conjecture holds when a = A1⊗A1⊗A3.
Since σ2(PA

∗
1 × · · · × PA∗

n) is reduced and irreducible, and Flata2 is irreducible, to prove the
conjecture it would be sufficient to show Flata2 is reduced. Using the methods outlined in §13,
it is possible to reduce the conjecture further to showing that Flata2 is arithmetically Cohen-
Macaulay, see [41].

In [28], a computer calculation is presented that gives the dimensions of the minimal space
of generators of the ideals of σ2(Seg(P

1 × P
1 × P

1 × P
1)) and σ2(Seg(P

1 × P
1 × P

1 × P
1 × P

1)),
which, as shown in [5], allows one to prove the GSS conjecture for up to five factors. The proof
relies on a variant of Proposition 12.2.2 which was arrived at independently using the geometry
of phylogenetic trees.



28 J.M. LANDSBERG

12.2. Subspace varieties.

Definition 12.2.1. Define the s-subspace variety

(12.2.1) Subs := P{T ∈ A1⊗ · · · ⊗ An | ∃A′
j ⊂ Aj dimA′

j = s, T ∈ A′
1⊗ · · · ⊗ A′

n}

Note that σs(Seg(PA1 × · · · × PAn)) ⊆ Subs, so the equations of Subs are also equations for
σs(Seg(PA1 × · · · × PAn)).

Proposition 12.2.2. [39] The ideal of σr(Seg(PA
∗
1 × · · · × PA∗

n)), when each dimA∗
j ≥ r is

generated by the union of the the modules in its ideal inherited from the modules generating
the ideal of σr(Seg(P

r−1 × · · · × P
r−1)) and the modules generating the ideal of Subr.

To see this, note that by Proposition 11.4.1, a copy of a module Sπ1
A1⊗ · · · ⊗SπnAn will

be in I(σr(Seg(P
r−1 × · · · × P

r−1))) if and only if the corresponding copy of the module
Sπ1

C
l(π1)⊗ · · · ⊗SπnC

l(πn) is in the ideal of σr(Seg(P
l(π1)−1 × · · · × P

l(πn)−1)).
The ideal of Subr is easy to describe:

Theorem 12.2.3. [41] The ideal of Subr is generated in degree r + 1 by the modules

(12.2.2) Λr+1Aj⊗Λr+1(A1⊗ · · · ⊗ Aj−1⊗Aj+1⊗ · · · ⊗ An)

for 1 ≤ j ≤ n (minus redundancies).

Proof. First note that the ideal of Subr consists of all modules Sπ1
A1⊗ · · · ⊗ SπnAn occurring in

Sd(A1⊗ · · · ⊗ An) where each πj is a partition of d and at least one πj has l(πj) > r. We need to
show that this ideal is generated by the modules (12.2.2). But for each j, the ideal consisting of
representations Sπ1

A1⊗ · · · ⊗ SπnAn occurring in Sd(A1⊗ · · · ⊗ An) where l(πj) > r is generated
in degree r + 1 by

Λr+1Aj⊗Λr+1(A1⊗ · · · ⊗ Aj−1⊗Aj+1⊗ · · · ⊗ An),

because it is just the ideal of σr(PAj × P(A1⊗ · · · ⊗ Âj⊗ · · · ⊗ An)). �

Corollary 12.2.4. [37] The ideal of σ2(Seg(PA
∗ ×PB∗×PC∗)) is generated in degree three by

Λ2A⊗Λ2(B⊗C),Λ2B⊗Λ2(A⊗C) and Λ2C⊗Λ2(A⊗B).

Proof. σ2(PA× PB × PC) = Sub2 because σ2(P
1 × P

1 × P
1) = P(C2 × C

2 × C
2). �

We remark that the spaces Λ2A⊗Λ2(B⊗C),Λ2B⊗Λ2(A⊗C), Λ2C⊗Λ2(A⊗B) intersect, so
there is redundancy in the above description. This redundancy becomes apparent if one expresses
the spaces as sums of irreducible modules.

The s-subspace variety is a cousin of the rank varieties in [57]. Moreover, it has a natural
desingularization explained in §13.

13. Weyman’s method

In this section we describe techniques for obtaining generators of the ideals of secant varieties
of Segre varieties and more generally of G-varieties Z ⊂ PV , where G is a reductive group, V
is an irreducible G-module and by definition Z is a variety invariant under the action of G. In
addition to providing generators of the ideal, the techniques enable one to compute the entire
minimal free resolution of the ideal of Z as well as precise information about the singularities
of Z. These techniques require considerably more machinery from commutative algebra and
representation theory than we have used up until this point. We expect they will be useful in
future work.
G-varieties are often uniruled by large linear spaces, and singularities occur when the linear

spaces crash into one another. To remedy this, one could try to untangle the linear spaces.
This appears to be the idea underlying Kempf’s desingularization by the collapsing of a vector
bundle. The idea is, given a G-variety Z ⊂ PV , to find (i.) a homogeneous variety G/P , (ii.)
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a homogeneous vector bundle E → G/P that is the subbundle of a trivial bundle V with fiber
isomorphic to V (here P is a parabolic subgroup of G), and (iii.) a map PE → Z that is a
desingularization.

For example, let G(k,A) denote the Grassmannian of k-planes through the origin in A. let
G = GL(A) × GL(B) × GL(C), let Z = Subs be as defined in §12.2.1. Then let G/P =
G(s,A) ×G(s,B) ×G(s,C) and let E = SA⊗SB⊗SC , where SA|F is the s-plane F ⊂ A. Then
PE → Subs gives the desired desingularization.

Weyman takes Kempf’s idea a step further by observing that often one can “push down” the
minimal free resolution of the total space of E as a subvariety of the total space of the trivial
bundle (more precisely, of the structure sheaf of E as an OV -module) to obtain the minimal free
resolution of Z. Moreover, since the whole procedure is G-equivariant, one gets the generators
as modules.

The idea is as follows: Assume that the sheaf cohomology groups H i(Sd(E∗)) are all zero for
i > 0 and for all d. Consider the exact sequence

0 → (V /E)∗ → V ∗ → E∗ → 0

giving rise, for each j, to a sequence

0 → Λj(V /E)∗ → ΛjV ∗ → Λj−1V ∗⊗E∗ → · · · → V ∗⊗Sj−1E∗ → SjE∗ → 0

Since V is trivial, and by our hypothesis all terms but the first have no cohomology in degree
greater than zero, when we take the long exact sequence in cohomology, we can split it into
short exact sequences that we can in turn splice together to conclude that Hk(Λj(V /E)∗) is the
k-th homology of the sequence

0 → H0(ΛjV ∗) → H0(Λj−1V ∗⊗E∗) → · · · → H0(SjE∗) → 0.

We add the hypothesis that the last step is surjective.
Now consider

ΛdV ∗ → Λd−1V ∗⊗H0(S1E∗) → · · · → V ∗⊗H0(Sd−1E∗) → H0(SdE∗) → 0

↑ ↑ ↑ ↑

ΛdV ∗ → Λd−1V ∗⊗V ∗ → · · · → V ∗⊗Sd−1V ∗ → SdV ∗ → 0

↑ ↑ ↑ ↑

0 → Λd−1⊗I1(Z) → · · · → V ∗⊗Id−1(Z) → Id(Z) → 0

where in the middle row we have SdV ∗ = H0(SdV ∗) which justifies the top row of vertical
arrows. The horizontal arrows are from the Koszul sequence. The generators of the ideal of Z
in degree d corresponds to the cokernel of the lower right arrow. Now apply the snake lemma
to see it is the homology of the d-th entry in the top sequence, which by the observation above
is Hd−1(Λd(V /E)∗). (One obtains the full minimal free resolution in a similar fashion.)

All the bundles in question are homogeneous. If they are moreover irreducible, then one can
apply the Bott-Borel-Weil theorem to reduce the calculation of the cohomology to a combina-
torial calculation with the Weyl group of G. Even if they are not irreducible, one can use BBW
on the associated graded bundles and then apply spectral sequences. For those who prefer to
avoid spectral sequences in such calculations, see [46].

Note that since we had to use the snake lemma, we have no canonical way of identifying
Hd−1(Λd(V /E)∗) with the space of generators in degree d, but in the equivariant setup, at least
they agree as modules.

Sometimes it is sufficient to work with a partial desingularization of Z, or a desingularization
of a G variety that contains Z as a variety of small codimension.
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In fact, one does not need Z to be a G-variety (although for applications it almost always is).
Here is Weyman’s “basic theorem”.

Theorem 13.0.1. [57] Let Y ⊂ PV be a variety and suppose there is a projective variety B
and a vector bundle E → B that is a subbundle of a trivial bundle V → B with V z ≃ V for

z ∈ B such that E → Ŷ is a desingularization. Write η = E∗ and ξ = (V /E)∗

If the sheaf cohomology groups H i(B,Sdη) are all zero for i > 0 and the linear maps
H0(B,Sdη)⊗V ∗ → H0(B,Sd+1η) are surjective for all d ≥ 0, then

(1) Ŷ is normal, with rational singularities.

(2) The coordinate ring K[Ŷ ] satisfies K[Ŷ ]d ≃ H0(B,Sdη).

(3) The vector space of minimal generators of the ideal of Ŷ in degree d is isomorphic to
Hd−1(B,Λdξ), which is also the homology of the sequence

Λ2V⊗H0(B,Sd−2η) → V⊗H0(B,Sd−1η) → H0(B,Sdη).

(4) More generally, ⊕jH
j(Λi+jξ) is isomorphic to the i-th term in the minimal free resolution

of Y .

If moreover Y is aG-variety and the desingularization isG-equivariant, then the identifications
above are as G-modules.

Using these methods, the minimal generators of the ideals of σr(Seg(P
1 × P

b × P
c)), σ3(P

a ×
P

b × P
c) and σ2(P

a × P
b × P

c × P
d) have been determined, see [41]. The method also gives

information about the singularities (e.g. normality, arithmetically Cohen-Macaulay-ness), which,
as mentioned above, can be used to reduce problems such as the GSS conjecture.

14. Appendix: Invariant formulations of two definitions from complexity

theory

The purpose of this section is to show how multiplicative complexity and separations can be
viewed invariantly, and to discusses advantages of the invariant perspective. While the discussion
is elementary, it is intended primarily for those already familiar with these notions and their
uses.

14.1. Multiplicative complexity and tensors. A slightly larger class of algorithms for ex-
ecuting bilinear maps f : A × B → C than those discussed in §1.2 is obtained by writing
V = A⊕B and considering T as a bilinear map V ×V → C. The multiplicative complexity of T
is the rank of T considered as a bilinear map V × V → C, that is, as an element of V ∗⊗V ∗⊗C.
This definition differs from those in the literature, e.g., [14] p. 352, but is equivalent.

The multiplicative complexity is the minimal number multiplications needed over all algo-
rithms expressible as straight line programs, which is a class of algorithms that are intended to
model (classical) computer programs. See [14], Definition 4.2 for a precise definition and a proof
of this statement.

Our definition of multiplicative complexity gives an immediate proof of (14.8) in [14] which
says that R(T ) ≥ multiplicative complexity(T ) ≥ 2R(T ). To see this, note that (A⊕B)⊗(A⊕
B)⊗C = A⊗B⊗C ⊕ A⊗B⊗C⊗A⊗A⊗C ⊕ B⊗B⊗C; so any expression for T in (A⊕ B)⊗2⊗C
of rank r projects to an expression for T of rank at most 2r in A⊗B⊗C (and of course the
projections to A⊗A⊗C and B⊗B⊗C must be zero).

Here is an example where the multiplicative complexity of a tensor is lower than its rank
whose presentation also illustrates our definition.

Example 14.1.1. V. Alekseyev [3], building on work of Hopcroft and Kerr [31], showed that
Rank(M2,2,3) = 11, but A. Waksman [56] give an explicit algorithm for M2,2,3 that uses 10
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multiplications. Here is such an algorithm expressed as a tensor in (A⊕B)∗⊗(A⊕B)∗⊗C (with
bases as in §2:

M2,2,3 =
1

2
(α1

1 + β2
1)⊗(α1

2 + β1
1)⊗(c11 − c21) +

1

2
(α1

1 + β2
2)⊗(α1

2 + β1
2)⊗(c12 + c21 + c23)

+
1

2
(α1

1 + β2
3)⊗(α1

2 + β1
3)⊗(c13 − c23) + (α2

1 + β2
1)⊗(α2

2 + β1
1)⊗c21

+
1

2
(α2

1 + β2
2)⊗(α2

2 + β1
2)⊗(−c21 + c22 − c23) + (α2

1 + β2
3)⊗(α2

2 + β1
3)⊗c23

+
1

2
(α1

1 − β2
1)⊗(−α1

2 + β1
1)⊗(c11 + c21) +

1

2
(α1

1 − β2
2)⊗(−α1

2 + β1
2)⊗(c12 − c21 − c23)

+
1

2
(α1

1 − β2
3)⊗(−α1

2 + β1
3)⊗(c13 + c23) +

1

2
(α2

1 − β2
2)⊗(−α2

2 + β1
2)⊗(c21 + c22 + c23).

Remark 14.1.2. It might also be natural to consider expressions of T ∈ A⊗B⊗C in (A⊕B⊕C)⊗3,
although it is not clear how to encode such an object in a straight line program. In any case,
the savings would be at best by a factor of 6 by the same reasoning as in the paragraph above.

14.2. Separations of computations. A standard technique for establishing lower bounds (due
to A. Alder and Strassen [2]), is separations. The best known lower bound for M3,3,3 is 19 (due to
Bläser [11]). It is obtained by extensive use of separations. In this section we define separations
in a more invariant fashion than in [2] and suggest a more geometric variant.

Definition 14.2.1. Let φ ∈ A∗⊗B∗⊗C be a computed tensor with computation of length r.
Let A1 ⊆ A, B1 ⊆ B, C1 ⊆ C be subspaces. We say φ separates (A1, B1, C1) if we may write
φ = φ1 +φ2+φ3 where the φi’s are computed tensors whose lengths sum to r with the properties
that

Lker(φ1|A1
) = 0, Rker(φ2|B1

) = 0

and no decomposable tensor appearing in the expression φ1 + φ2 takes values in C1. (This
definition is equivalent to the standard one.) Here for a bilinear map ψ : A×B → C, Lker(ψ) =
{a ∈ A | ψ(a, b) = 0∀b ∈ B} and similarly for Rker(ψ) ⊂ B.

For φ as above, the length of φ is at least dimA1 + dimB1 plus the number of decomposable
tensors appearing in φ3 taking values in C1; this is called the Separation Lemma. As this
observation indicates, separations are useful for obtaining lower bounds for the rank of a tensor.

If Lker(φ) = 0, then φ separates (A, 0, 0), and similarly for the right kernel. If Image(φ) = C
then φ separates (0, 0, C). Also, if φ separates (A′, B′, C ′) then for any A′′ ⊆ A′, B′′ ⊆ B′,
C ′′ ⊆ C ′, φ separates (A′′, B′′, C ′′).

Lemma 14.2.2 (Extension lemma). [2] Let φ ∈ A∗⊗B∗⊗C be a computed tensor that separates
(A1, B1, C1). Let A1 ⊆ A2 ⊆ A. If φ fails to separate (A2, B1, C1), then there exists a ∈ A2\A1

with

(14.2.1) φ(a,B) ⊆ φ(a,B1) + C1.

Of course the same is true with the roles of A and B interchanged.

Proof. We try to write φ = φ̃1 + φ̃2+ φ̃3 such that the tilded splitting of φ separates (A2, B1, C1).

Write φ3 = φ̃3 +φ′3 with Image(φ̃3) ⊂ C1 and φ̃3 maximal with this property. (Note that φ̃3 is
unique.) Then consider ψ = φ1 +φ2 +φ′3 and say ψ has length l. Then we have the best chance

of separating (A2, B1, C1) if we choose φ̃2 of minimal rank such that Rkerφ̃2 |B1
= 0. Thus the

length of φ̃2 = dimB1 =: b1. There are at most
(

l
b1

)

choices of such φ̃2. Given any admissible

such choice, the resulting φ̃1 := ψ− φ̃2 must also have the property that Lkerφ̃1 |A1
= 0. Say we
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have such a choice and we want to see if the separation extends to A2, that is, that Lkerφ̃1 |A2
= 0.

Now suppose not, then there exists a ∈ A2\A1 such that a ∈ Lker(φ̃1), and thus for all b ∈ B

φ(a, b) = φ̃2(a, b) + φ̃3(a, b).

Write B = B1 ⊕Rker(φ̃2) and given b ∈ B, b = b′ + b′′ uniquely with b′ ∈ B1, b
′′ ∈ Rker(φ̃2). So

φ(a, b) = φ(a, b′) + φ̃3(a, b
′′) ∈ 〈φ(a,B1)〉 + C1

So we see if φ fails to separate for at least one choice of tilded splitting equation, then (14.2.1)
holds. In particular equation (14.2.1) holds if it fails for all possible choices. �

Here is an easy application of the extension lemma:

Proposition 14.2.3. If A is a simple algebra and R ⊂ A a maximal right ideal, then any
computation of MultA separates (R,A, 0).

Proof. Since φ separates (A, 0, 0) it separates (R, 0, 0). Let B1 ⊂ B be maximal such that φ
separates (R,B1, 0). If B1 6= B then there exists a nonzero b ∈ B such that Ab ⊆ 〈RB〉 = R, a
contradiction as a left ideal cannot be contained in a right ideal. �

As a corollary we obtain a very easy proof that R(Mm,m,m) ≥ 2m2 −m.

Definition 14.2.4. A more natural and general definition of separation (which, to avoid con-
fusion, we call Separation), is as follows: Given T ∈ V ∗

1 ⊗ · · · ⊗V ∗
n , φ a computation of T and

Uj ⊆ Vj we will say φ Separates (U1, . . . , Un) if we have a decomposition φ = φ1 + · · · + φn + ψ
with each

φj : Uj → V ∗
1 ⊗ · · · ⊗V ∗

j−1⊗V
∗
j+1⊗ · · · ⊗V ∗

n

injective and length(φ) =
∑

i length(φi) + length(ψ).

If φ Separates (A1, B1, C1) then the length of φ is at least dimA1 + dimB1 + dimC1 so the
conclusion of the corresponding Separation lemma is a little stronger than that of the separation
lemma (but the hypotheses are stronger as well). Note that the hypotheses are also basis
independent, unlike the separation lemma.

We leave the statement and proof of the analogous Extension lemma to the reader.
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