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Abstract

Enflo and Rosenthal [4] proved that `p(ℵ1), 1 < p < 2, does not
(isomorphically) embed into Lp(µ) with µ a finite measure. We prove
that if X is a subspace of an Lp space, 1 < p < 2, and `p(ℵ1) does not
embed into X, then X embeds into Lp(µ) for some finite measure µ.

1 Introduction

In this note we study the structure of non separable subspaces X of Lp(µ)
with µ a finite measure. For 2 < p < ∞ an obvious necessary condition
is that `p(ℵ1) does not (isomorphically) embed into X. Indeed, since every
operator from even `p into a Hilbert space is compact, there is no one to one
(bounded, linear) operator from `p(ℵ1) into a Hilbert space. On the other
hand, for 2 < p, if µ is a finite measure we have Lp(µ) ⊂ L2(µ) with the
injection being continuous. We conjecture that if X is a subspace of some
Lp space, 2 < p < ∞, and `p(ℵ1) does not embed into X, then X embeds
into Lp(µ) for some finite measure µ. At the end of Section 3 we verify this
conjecture when X is a complemented subspace of some Lp. However, the
only information we know related to this conjecture for general subspaces is
Proposition 1, which says that in this range of p, a subspace X of an Lp space
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contains `p(ℵ1) isomorphically iff X contains `p(ℵ1) isometrically iff there is
no one to one operator from X into a Hilbert space.

For 1 ≤ p < 2, the conjectured classification mentioned above for 2 < p is
true. In Theorem 1, the main result of Section 2, we prove for p in this range
that a subspace X of an Lp space embeds into Lp(µ) for some finite measure
µ if and only if `p(ℵ1) does not embed (isomorphically) into X. This is not
equivalent to saying that X does not contain an isometric copy of `p(ℵ1) (but
is equivalent to saying that X contains almost isometric copies of `p(ℵ1); see
the remark after Theorem 1). Part of Theorem 1 is known. The p = 1 case
is an almost immediate consequence of a result due to Rosenthal [9], and, as
mentioned in the abstract, the fact that X does not embed into Lp(µ) for
any finite measure µ if `p(ℵ1) embeds into X is due to Enflo and Rosenthal
[4]. The main new result herein is the “if” part of Theorem 1.

In Section 3 we generalize the results in Section 2 to higher cardinals
and thereby obtain characterizations of subspaces of Lp spaces that contain
an isomorphic copy of `p(ℵ) for a general uncountable cardinal ℵ. Section
3 contains as special cases the results of Section 2, but the arguments in
Section 3 require somewhat more background knowledge and there are a few
more technicalities.

Although not directly relevant for this note, we draw attention to another
result in [4]; namely, that for 1 < p 6= 2 <∞, a space Lp(µ) with µ finite does
not have an unconditional basis if its density character is at least ℵω. Trying
(unfortunately, unsuccessfully) to decide what happens when the density
character is ℵ1 led us to the results presented here.

2 Main Results

We begin with the easy result mentioned in the introduction

Proposition 1 Let X be a subspace of some Lp space, 2 < p < ∞. The
following are equivalent:

• `p(ℵ1) isometrically embeds into X.

• There is a subspace of X that is isomorphic to `p(ℵ1) and is comple-
mented in Lp.

• `p(ℵ1) isomorphically embeds into X.
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• There is no one to one (bounded, linear) operator from X into a Hilbert
space.

Proof: Since every isometric copy of an Lp space in an Lp space is norm
one complemented [5, Theorem 6.3], and since we already explained in the
introduction why the third assertion implies the fourth, we only need to
prove that the fourth condition implies the first condition. For this, we
use Maharam’s theorem [6], [5, Theorem 5.8], which implies that X is a
subspace of Lp := (

∑
γ∈Γ Lp{−1, 1}ℵγ )p for some set Γ of ordinal numbers,

where {−1, 1} is endowed with the uniform probability measure.
Now assume that there is no one to one operator from X into a Hilbert

space. This implies that for any countable subset Γ′ of Γ, the natural pro-
jection PΓ′ from Lp onto (

∑
γ∈Γ′ Lp{−1, 1}ℵγ )p is not one to one on X, be-

cause one can map (
∑

γ∈Γ′ Lp{−1, 1}ℵγ )p one to one into the Hilbert space

(
∑

γ∈Γ′ L2{−1, 1}ℵγ )2 in an obvious way when Γ′ is countable. On the other
hand, given any x in X, there is a countable subset x(Γ) of Γ so that Pγx = 0
for all γ not in x(Γ). Thus if one takes a collection of unit vectors x in X
maximal with respect to the property that x(Γ)∩y(Γ) = ∅ when x 6= y, then
the collection must have cardinality at least ℵ1 and hence `p(ℵ1) embeds
isometrically into X.

Proposition 1 is completely wrong for p < 2. For one thing, there is
an obvious one to one operator from `p(Γ) into a Hilbert space–the formal
identity mapping from `p(Γ) into `2(Γ). Secondly, there are subspaces of Lp
isomorphic to `p(Γ) for any set Γ that do not contain isometric copies even
of `p. Indeed, take a family (fγ)γ∈Γ of independent standard normal random
variables on some probability space (Ω, µ) and in Lp(µ)⊕p `p(Γ) consider the
closed linear span of (fγ ⊕ eγ)γ∈Γ, where (eγ)γ∈Γ is the unit vector basis for
`p(Γ).

It is reasonable to conjecture that an isomorphic copy of `p(Γ) in an Lp
space contains for every ε > 0 a 1 + ε-isomorphic copy of `p(Γ), and this
is proved in the remark after Theorem 1 when Γ has cardinality ℵ1, and in
Theorem 2 for general uncountable Γ. (The case when Γ is countably infinite
is contained in [4].)

The main result in this note is

Theorem 1 Let X be a subspace of some Lp space, 1 ≤ p < 2. Then X
embeds into Lp(µ) for some finite measure µ if and only if `p(ℵ1) does not
embed (isomorphically) into X.
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Proof: In view of [4], we only need to prove the if part, so assume that `p(ℵ1)
does not embed into X. As in the proof of Proposition 1, by Maharam’s
theorem we can assume that X is a subspace of Lp := (

∑
γ∈Γ Lp{−1, 1}ℵγ )p

for some set Γ of ordinal numbers. Assume now that X does not embed into
Lp(µ) for any finite measure µ. We want to build a long unconditionally basic
sequence (xα)α<ℵ1 of unit vectors in X that have “big disjoint pieces”; more
precisely, so that there are disjoint countable subsets Γα, α < ℵ1, of Γ so
that PΓαxβ 6= 0 iff α = β. It then follows that for some ε > 0, ‖PΓαxα‖ > ε
for ℵ1 values of α, which we might as well assume for all α < ℵ1. Such a
sequence must, by the diagonal principle [8, Proposition 1.c.8] (or with a
worse constant, by a square function argument), dominate the unit vector
basis of `p(ℵ1). But by the type p property of Lp [1, Theorem 6.2.14], every
normalized unconditionally basic sequence of cardinality ℵ1 is dominated by
the unit vector basis of `p(ℵ1). Here we use “dominate” as is customary in
Banach space theory: (xα) dominates (yα) provided there is a constant C so
that for all finite sets aα of scalars, ‖

∑
aαyα‖ ≤ C‖

∑
aαxα‖.

Since X does not embed into Lp(µ) for any finite measure µ, we have
for any countable subset Γ′ of Γ that the restriction of PΓ′ to X is not an
isomorphism, because (

∑
γ∈Γ′ Lp{−1, 1}ℵγ )p is isometrically isomorphic to

Lp(µ) for some finite µ when Γ′ is countable. From this it is not hard to get
a set (xα)α<ℵ1 of unit vectors in X that have big disjoint pieces. In the case
p = 1, this is enough by Rosenthal’s technique [9] to get a subset of (xα)α<ℵ1
that is equivalent to the unit vector basis of `1(ℵ1), but for p > 1 we need
to do more work to get (xα)α<ℵ1 unconditionally basic. So, from here on, we
assume that 1 < p < 2.

Call a set S of vectors in Lp = (
∑

γ∈Γ Lp{−1, 1}ℵγ )p a generalized martin-
gale difference set (GMD set, in short) provided that for every finite subset
F of S and every γ in Γ, the sequence (Pγx)x∈F can be ordered to be a mar-
tingale difference sequence. We allow 0 to appear in a martingale difference
sequence, but the definition requires that Pγx 6= Pγy if Pγx 6= 0. Since a
martingale difference sequence is unconditional in Lp(µ) for any probability
µ, any 1 < p < ∞, and with the unconditional constant depending only on
p [2], a GMD set in Lp is unconditionally basic for our range of p.

Take a collection V of pairs (x, γ(x))x∈M in X×Γ maximal with respect to
the properties that ‖x‖ = 1, Pγ(x)x 6= 0, the γ(x) are all distinct, and M is a
GMD set. The collection M is unconditionally basic and has disjoint pieces,
hence if M is uncountable there is a subset of M having cardinality ℵ1 that is
equivalent to the unit vector basis for `p(ℵ1). So assume that M is countable.
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For each x in M , there is a countable subset x(Γ) of Γ so that Pγx = 0
for γ 6∈ x(Γ). Set Γ′ = ∪x∈Mx(Γ). Each vector in Lp{−1, 1}ℵγ depends
on only countably many coordinates, so for each γ in Γ′ there is countable
subset S(γ) of ℵγ so that for every x in M , the vector Pγx depends only on
S(γ). Let QS(γ) be the (norm one) conditional expectation projection from
Lp{−1, 1}ℵγ onto its subspace of functions that depend only on S(γ) and let
Q be the (norm one) projection on Lp that is the direct sum over Γ′ of QS(γ).
Since the projection Q has separable range and we are assuming that X does
not embed into Lp(µ) for any finite measure µ, the space X ′ := kerQ ∩ X
also does not embed into Lp(µ) for any finite measure µ. This is perhaps not
quite obvious but follows from the reflexivity of X. Lindenstrauss proved
that reflexive spaces have the separable complementation property [7], so
there is a complemented separable subspace Y of X∗ that contains the range
of (Q|X)∗ and hence the co-separable complemented subspace Y⊥ ⊂ X ′ of
X cannot embed into Lp(µ) for any finite measure µ. Now let PΓ′ be the
natural projection from Lp onto (

∑
γ∈Γ′ Lp{−1, 1}ℵγ )p. Since Γ′ is countable,

the space (
∑

γ∈Γ′ Lp{−1, 1}ℵγ )p is isometric to Lp(µ) for some probability µ
and hence PΓ′ is not an isomorphism on X ′. So there is a unit vector x in X ′

so that PΓ′x 6= 0; in fact, ‖PΓ′x‖ can be taken arbitrarily close to one (this
is important for the remark below). In particular, there is γ(x) ∈ Γ ∼ Γ′ so
that Pγ(x)x 6= 0. Since also {x}∪M is a GMD set, V ∪{(x, γ(x))} contradicts
the maximality of V .

Remark. A minor modification of the above argument shows that if X ⊂ Lp,
1 < p < 2, does not embed into Lp(µ) for some finite measure µ, then `p(ℵ1)
almost isometrically embeds into X. One needs to define the collection V a
bit differently. Fix ε > 0 and take a set V of pairs (x,Γ(x))x∈M with each
x a unit vector in X, each Γ(x) a countable subset of Γ, and maximal with
respect to the properties that the M forms a GMD set, ‖PΓ(x)x‖ > 1−ε, and
the Γ(x) are pairwise disjoint. The argument for Theorem 1 shows that V is
uncountable. Notice that the collection M is an ε-GMD perturbation of the
disjoint vectors (PΓ(x)x)x∈M ; i.e., (x − PΓ(x)x)x∈M is a GMD set of vectors
each of which has norm less than ε. Thus for any scalars ax, we have by
the type p property of Lp and the GMD property of (x − PΓ(x)x)x∈M that
‖

∑
ax(x− PΓ(x)x)‖ ≤ εCp(

∑
|ax|p)1/p.
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3 Higher cardinals

In this section we generalize the main results in the previous section to the
setting of `p(ℵα) with α > 1. Towards the end of this section we also deal with
complemented subspaces of Lp spaces which do not contain large `p(Γ) spaces
and extend our results to the range 2 < p < ∞, but only for complemented
subspaces. We begin with a higher cardinal version of Proposition 1.

Let us say that a Banach space is an Lp(ℵ) space, where ℵ is an infinite
cardinal, provided X is isometric to (

∑
α∈Γ Lp(µα))p with |Γ| ≤ ℵ and each

µa a finite measure (which of course can be taken to be probabilities).

Proposition 2 Let X be a subspace of some Lp space, 2 < p < ∞, and let
ℵ be an uncountable cardinal. The following are equivalent:

(1) `p(ℵ) isometrically embeds into X.

(2) There is a subspace of X that is isomorphic to `p(ℵ) and is comple-
mented in Lp.

(3) `p(ℵ) isomorphically embeds into X.

(4) There is no one to one (bounded, linear) operator from X into an Lp(Γ)
space with Γ < ℵ.

Proof: As was mentioned in the proof of Proposition 1, the implication
(1) =⇒ (2) is known, and (2) =⇒ (3) is obvious. For (3) =⇒ (4) it is
enough to show that for Γ < ℵ, there is no one to one operator from `p(ℵ)
into (

∑
α∈Γ Lp(µα))p with each µα a probability. Suppose, to the contrary,

that T is such an operator. Let iαp,2 be the formal inclusion mapping from
Lp(µα))p into L2(µα))p. The operators iαp,2PαT are all compact and the iαp,2
are all one to one, so for each α ∈ Γ there is a countable subset Aa of ℵ such
that PαTeβ = 0 for all β ∈ ℵ ∼ Aa, where (eβ)β∈ℵ is the unit vector basis for
`p(ℵ). Since T is one to one, ∪α∈Γ = ℵ and hence ℵ = |∪α∈Γ | ≤ |Γ| ·ℵ0 = |Γ|.

For (4) =⇒ (1), assume that X is a subspace of (
∑

α∈Γ Lp(µα))p with
each µα a probability. By (4), for all Γ′ ⊂ Γ with |Γ′| < ℵ, we have that
the restriction of PΓ′ to X is not one to one. Take a collection S of unit
vectors in X maximal with respect to the property that x(Γ) ∩ y(Γ) = ∅ for
x 6= y in S, where x(Γ) is the (countable) set of all α ∈ Γ for which Pαx 6= 0.
If |S| < ℵ then Γ′ := ∪x∈S has cardinality at most |S| · ℵ0 < ℵ, which by
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(4) implies that the restriction of PΓ′ to X is not one to one, which clearly
contradicts the maximality of S.

We turn now to the case 1 < p < 2 (Rosenthal [9] treated the case p = 1
long ago). In addition to the argument for Theorem 1, we need the following
lemma.

Lemma 1 Let 1 < p < 2 and let ℵ be an uncountable cardinal. If ℵ′ < ℵ,
then `p(ℵ) is not isomorphic to a subspace of any Lp(ℵ′) space.

Proof: Notice that it follows by duality from Proposition 2 that `p(ℵ) is
not isomorphic to a complemented subspace of any Lp(ℵ′) space. So we just
need to prove that if `p(ℵ) embeds into an Lp(ℵ′) space, then it embeds into
some other Lp(ℵ′) space as a complemented subspace.

Assume that (xα)α∈ℵ is a normalized set of vectors in some Lp(ℵ′) space
Lp(Ω, µ) that is equivalent to the unit vector basis for `p(ℵ). In particular,
there is θ > 0 so that for all finite subsets F of ℵ and all scalars (cα)α∈F ,

‖
∑
α∈F

cαxα‖p ≥ θ(
∑
α∈F

|cα|p)1/p. (1)

By enlarging (Ω, µ) (but keeping Lp(Ω, µ) an Lp(ℵ′) space) we can assume
that µ is purely nonatomic. In the Lp(ℵ′) space Lp(Ω×{−1, 1}ℵ, µ×ν) (where
ν is the usual Haar measure on {−1, 1}ℵ), consider the vectors yα := xα ⊗
rα, where rα is the usual coordinate projection [Rademacher] on {−1, 1}ℵ.
Then (yα) is also equivalent to the usual basis for `p(ℵ) (and satisfies the
inequality (1)) and, incidentally, is 1-unconditional (so that it satisfies the
reverse inequality to (1) with θ replaced by one).

We claim that the closed linear span Y of (yα) is complemented in Lp(Ω×
{−1, 1}ℵ, µ×ν). Notice that to prove the claim, it is enough to define for each
finite subset F of ℵ a projection PF from Lp(Ω × {−1, 1}ℵ, µ × ν) onto the
span YF of {yα : α ∈ F} so that supF ‖PF‖ := C <∞. Indeed, if you index
the finite subsets of ℵ by inclusion, the resulting net (PF ), being uniformly
bounded, has a weak operator cluster point (say P ) by the reflexivity of Lp
spaces. It is easy to check that P is a projection onto Y and ‖P‖ ≤ C.

So let F be any finite non empty subset of ℵ. By a result of Dor [3,
Theorem B], inequality (1) implies that there are disjoint subsets (Ωα)α∈F of
Ω so that for each α in F ,

‖xa1Ωα‖p ≥ θ2/(2−p). (2)
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(Dor’s theorem is stated for [0, 1] with Lebesgue meaure, but the proof works
for any non atomic measure space. Alternatively, the more general result can
be deduced formally from the case of [0, 1].) For simplicity, and without loss
of generality by replacing the Ωα with subsets, we can assume that for each
α in F there is equality in inequality (2).

Define for α in F disjoint functions

fα := θ(2p)/(p−2)|xα|p−11Ωαsignxα. (3)

Now define gα := fα⊗rα. So the gα are disjoint vectors in Lp′(Ω×{−1, 1}ℵ, µ×
ν), the dual of Lp(Ω×{−1, 1}ℵ, µ×ν). The power of θ in their definition was
chosen to make (yα, gα)α∈F a biorthogonal system. A routine computation
shows that the projection PF :=

∑
α∈F gα⊗ yα from Lp(Ω×{−1, 1}ℵ, µ× ν)

onto YF has norm at most θ2/(p−2).
The main result of this section is a generalization of Theorem 1 to higher

cardinals.

Theorem 2 Let X be a subspace of some Lp space, 1 ≤ p < 2, and let ℵ be
an uncountable cardinal. The following are equivalent.

(1) For all ε > 0, `p(ℵ) is 1 + ε-isomorphic to a subspace of X.

(2) There is a subspace of X that is isomorphic to `p(ℵ) and is comple-
mented in Lp.

(3) `p(ℵ) isomorphically embeds into X.

(4) X does not isomorphically embed into an Lp(ℵ′) space with ℵ′ < ℵ.

Proof: The implication (1) =⇒ (2) follows easily from [10], while (2) =⇒
(3) is obvious. Lemma 1 gives (3) =⇒ (4), so we only need to prove
(4) =⇒ (1).

By Maharam’s theorem [6], we can assume that X is a subspace of Lp :=
(
∑

β∈B Lp{−1, 1}ℵβ)p. Given ε > 0, take a set M := {xγ : γ ∈ Γ} of unit
vectors in X maximal with respect to the properties

(i) The collection M is a GMD set.

(ii) There are disjoint countable subsets Bγ of B such that for all γ in Γ,
‖PBγxγ‖ > 1− ε.
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To get (1), just as in the proof of Theorem 1 it is enough to verify that |Γ| ≥ ℵ.
Assume instead that ℵ > |Γ|. We might as well assume, by enlarging the
Bγ’s, that for β 6∈ B′ := ∪γ∈ΓBγ, we have Pβxγ = 0 for all γ in Γ.

For each β in B′ and γ in Γ, let Cβ,γ be the (countable) set of coordinates
of {−1, 1}ℵβ on which Pβxγ depends, and let Cβ := ∪γ∈ΓCβ,γ. Then |Cβ| ≤
|Γ| and hence the density character of Lp{−1, 1}Cβ is at most |Γ|.

Let Eβ be the (norm one) conditional expectation projection from Lp{−1, 1}ℵβ
onto Lp{−1, 1}Cβ and let Q := (

∑
β∈B′ Eβ)p be the direct sum of these pro-

jections; we consider Q a a projection on Lp. Note that the density character
of the range of Q is at most |Γ| < ℵ.

Just as in the proof of Theorem 1, this implies that X ′ := ker(Q) ∩ X
does not embed isomorphically into an Lp(ℵ′) space with ℵ′ < ℵ. Indeed,
Lindenstrauss [7] proved that there is a norm one complemented subspace Y
of X∗ which contains the range of (Q|X)∗ so that the density character of Y
is the same as the density character of QX, which is at most |Γ| < ℵ. This
obviously implies that Y ∗ (which is isometric to the range of the adjoint of
the norm one projection onto Y ) embeds isometrically into an Lp(|Γ|) space
and hence Y ⊥ cannot embed into an Lp(ℵ′) space because X does not. Since
Y ⊥ is contained in X ′, also X ′ also does not embed into an Lp(ℵ′) space.

The above argument shows that (PB′)|X is not an isomorphism, so there
is a norm one element x in X ′ such that ‖PB′x‖ < ε. Then M ∪{x} satisfies
(i) and (ii), which contradicts the maximality of M .

Theorem 3 below gives another equivalence to the conditions in Theorem
2 that provides information on complemented subspaces of Lp spaces for all
1 < p < ∞. The proof is similar to the proof of (4) =⇒ (1) in Theorem 2
but uses the well known consequence of Lindenstrauss’ [7] work that every
reflexive space X has an M -basis; that is, a biorthogonal system {xα, x∗α}α∈A
such that the linear span of {xα}α∈A is dense in X and {x∗α}α∈A separates
points of X (which, in view of the reflexivity of X, is the same as saying that
the linear span of {x∗α}α∈A is dense in X∗); see, for example, [11, Theorem
4.2].

In the proof of Theorem 3 we use the following simple lemma, which is
a special case of a result well known to people who work in non separable
Banach space theory. To avoid cumbersome notation in the statement and
proof of the lemma, we introduce here some notation. Fix 1 < p < ∞ and
consider a space Lp = (

∑
β∈B Lp{−1, 1}ℵβ)p. We call a projection P on Lp of

the form
∑

β∈B′ ECβ with B′ ⊂ B and Cβ a non empty subset of ℵβ for β ∈ B′
a standard projection. Here ECβ is the conditional expectation projection
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from Lp{−1, 1}ℵβ onto Lp{−1, 1}Cβ . So if P is a standard projection on
Lp, then P ∗ is the obvious standard projection on Lp∗ . Given standard
projections P and Q on Lp, write P ≤ Q if QP = P . So if P ≤ Q, then
QP = PQ = P . Evidently if P =

∑
β∈B′ ECβ and Q =

∑
β∈B′′ EC′β

, then

P ≤ Q iff B′ ⊂ B′′ and for all β ∈ B′ we have Cβ ⊂ C ′β. Notice that the
density character of the range of a standard projection P =

∑
β∈B ECβ is

ℵ0 +
∑

β∈B |Cβ|.

Lemma 2 Let {xα}α∈A be an M-basis for a subspace X of
Lp := (

∑
β∈B Lp{−1, 1}ℵβ)p and let P be a standard projection on Lp. Then

there is a standard projection Q ≥ P on Lp so that the density character ℵ
of the range of Q is the same as the density character of the range of P and
so that there is a subset A′ ⊂ A with |A′| ≤ ℵ and Qxα = xα for α ∈ A′ and
Qxα = 0 for α 6∈ A′.

Proof: The main point is the obvious fact that if T is an operator from X
into some Banach space and the range of T ∗ is contained in the closed span
of {x∗α}a∈A′ , then for all α 6∈ A′ we have Txα = 0. Construct by induction
an increasing sequence Pn of standard projections on Lp and subsets
A1 ⊂ A2 ⊂ . . . of A so that for each n we have

• The range of (Pn|X)∗ is contained in the closed span of {x∗α}a∈An .

• Pn+1xα = xα for all α ∈ An.

Use the “main point” to check that the sequence Pn converges strongly to a
standard projection Q that satisfies the conclusions of the lemma.

Theorem 3 Let X be a subspace of Lp = (
∑

β∈B Lp{−1, 1}ℵβ)p, 1 < p < 2,
and let ℵ be an uncountable cardinal. If `p(ℵ) is not isomorphic to a subspace
of X, then for every ε > 0 there is a subset B′ of B with |B′| < ℵ so
that the restriction projection PB′ of Lp onto (

∑
β∈B′ Lp{−1, 1}ℵβ)p satisfies

‖PB′x− x‖ ≤ ε‖x‖ for every x ∈ X.

Proof: Since X has an M -basis we deduce from Lemma 2 that if P is a
standard projection on Lp, then there is a standard projection Q on Lp so
that Q ≥ P and QX ⊂ X and the range of Q has the same density character
as the range of P . We now basically just repeat the proof of (4) =⇒ (1) in
Theorem 2, but input this consequence of Lemma 2.
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Assume that the conclusion of Theorem 3 is false for a certain ε > 0.
Take a set M := {xγ : γ ∈ Γ} of unit vectors in X maximal with respect to
the properties

(i) The collection M is a GMD set.

(ii) There are disjoint countable subsets Bγ of B such that for all γ in Γ,
‖PBγxγ‖ > ε/2.

To get a contradiction, just as in the proofs of Theorem 1 and Theorem 2,
it is enough to verify that |Γ| ≥ ℵ. Assume instead that ℵ > |Γ|. We might
as well assume, by enlarging the Bγ’s, that for β 6∈ B′ := ∪γ∈ΓBγ, we have
Pβxγ = 0 for all γ in Γ. The set B′ could be replaced with any superset that
has cardinality at most |Γ|.

For each β in B′ and γ in Γ, let Cβ,γ be the (countable) set of coordinates
of {−1, 1}ℵβ on which Pβxγ depends, and let Cβ := ∪γ∈ΓCβ,γ. Then |Cβ| ≤
|Γ| and hence the density character of Lp{−1, 1}Cβ is at most |Γ|. We could as
well replace Cβ with any subset of ℵβ of cardinality at most |Γ| that contains
this Cβ. Let Eβ be the (norm one) conditional expectation projection from
Lp{−1, 1}ℵβ onto Lp{−1, 1}Cβ and let P := (

∑
β∈B′ Eβ)p be the direct sum of

these projections; so P is a standard projection on Lp. Note that the density
character of the range of P is at most |Γ| < ℵ. By the consequence of
Lemma 2 we mentioned above, there is a standard projection Q ≥ P so that
the density characters of the ranges of Q and P are the same and QX ⊂ X.
By the replacement comments made above, without loss of generality we can
avoid introducing additional notation and just assume that P = Q.

We are now ready for the punch line. If y is a unit vector in the subspace
(I−P )X of X, then M∪{y} is still a GMD set. Consequently, by maximality
of M we have ‖(I − PB′)y‖ ≤ ε/2. Thus if x is a unit vector in X we have
since P ≤ PB′ that

‖x− PB′x‖ = ‖(I − PB′)(I − P )x‖ ≤ (ε/2)‖(I − P )x‖ ≤ ε‖x‖.

Our main reason for proving Theorem 3 is that it gives as a corollary a
verification of the conjecture mentioned in the Introduction for complemented
subspaces of Lp spaces, 2 < p <∞.

Corollary 1 Assume that X is a complemented subspace of some Lp space
(say, with a projection of norm λ). Let ℵ be an infinite cardinal and assume
that `p(ℵ) is not isomorphic to a subspace of X. Then
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(1) If 1 < p < 2, then for all ε > 0 there is ℵ′ < ℵ such that the space X is
(1 +ε)-isomorphic to a (1 +ε)λ-complemented subspace of some Lp(ℵ′)
space.

(2) If 2 < p < ∞, then there is ℵ′ < ℵ such that X is isomorphic to a
complemented subspace of some Lp(ℵ′) space.

Proof: In view of Maharam’s theorem, (1) is immediate from Theorem 3
and the principle of small perturbations. Conclusion (2) follows from (1) by
duality and the equivalence of (2) and (3) in Theorem 2.

References

[1] Albiac, Fernando; Kalton, Nigel J., Topics in Banach space theory.
Graduate Texts in Mathematics, 233. Springer, New York, 2006.

[2] Burkholder, D. L., Distribution function inequalities for martingales.
Ann. Probability 1 (1973), 19–42.

[3] Dor, Leonard E., On projections in L1. Ann. of Math. (2) 102 (1975),
no. 3, 463–474.

[4] Enflo, Per; Rosenthal, Haskell P., Some results concerning Lp(µ)-
spaces. J. Functional Analysis 14 (1973), 325–348.

[5] Lacey, H. Elton, The isometric theory of classical Banach spaces. Die
Grundlehren der mathematischen Wissenschaften, Band 208. Springer-
Verlag, New York-Heidelberg, 1974.

[6] Maharam, Dorothy, On homogeneous measure algebras. Proc. Nat.
Acad. Sci. U. S. A. 28, (1942), 108–111.

[7] Lindenstrauss, Joram, On nonseparable reflexive Banach spaces. Bull.
Amer. Math. Soc. 72 (1966), 967–970.

[8] Lindenstrauss, Joram; Tzafriri, Lior, Classical Banach spaces. I. Se-
quence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol.
92. Springer-Verlag, Berlin-New York, 1977.

12



[9] Rosenthal, Haskell P, On relatively disjoint families of measures, with
some applications to Banach space theory. Studia Math. 37 (1970),
13–36.

[10] Schechtman, Gideon, Almost isometric Lp subspaces of Lp(0, 1). J. Lon-
don Math. Soc. (2) 20 (1979), no. 3, 516–528.
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