Math 311-Zhou

Review for Exam I

- **1.** Put Ax = b into its augmented matrix [A|b]. Use three elementary row operations (3ERO): (1) $(i) \leftrightarrow (j), (2) \alpha(i), (3) \alpha(i) \leftrightarrow (j)$. (Gauss Elimination and Gauss-Jordan Reduction)
- 2. Reduce [A|b] to its (reduced) Echelon form and determine if Ax = b has (1) no solution, (2) unique solution or (3) infinite many solutions. In cases of (2)/(3), find all solutions.

3. Find
$$A^{-1}$$
, $A^{-1}_{2\times 2} = \frac{1}{d} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$, $(d = |A|)$ or $[A|I] \to \dots \to [I|A^{-1}]$ using 3ERO.

- 4. Evaluate |A|. n = 2, 3, use the diagram. n = 4, use cofactor expansion along a row/column $|A| = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} |M_{ik}| = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} |M_{kj}|$, use properties and 3ERO $(-1, \alpha, 1)$.
- **5.** Vector spaces and subspaces (closed in $\alpha v_1 + \beta v_2$). Find $\mathcal{N}(A) \Leftrightarrow$ solve Ax = 0 for all x.
- 6. Linear Combination: $c_1A_1 + \cdots + c_nA_n = b \Rightarrow Ax = b$ where $x = (c_1, \dots, c_n)^T, A = [A_1, \dots, A_n]$.
- 7. Check $S = \text{span}\{v_1, ..., v_m\}$. Any $v \in S, v = c_1v_1 + \cdots + c_mv_m$, e.g., $S \subset V = \mathbb{R}^n$ and $V = P_n$.
- 8. Linear independent/dependent: ask if $c_1v_1 + \cdots + c_nv_n = 0$ has a nonzero solution (c_1, \dots, c_n) ?
- **9.** Basis $\{v_1, ..., v_n\}$ to V if (a) $v_1, ..., v_n$ are LI and (b) $V = \text{span}\{v_1, ..., v_n\}$. $(n = \dim(V))$. Given $\{u_1, ..., u_m\}$ in V with $\dim(V) = n$, LD if m > n, cannot span if m < n and LI \Leftrightarrow span if m = n.
- 10. Reduce a spanning set to a basis by (11) and extend a LI set to a basis by [AI] and (11).
- **11.** $v_1 = (a_{11}, a_{21}, ..., a_{n1})^T, ... v_m = (a_{1m}, a_{2m}, ..., a_{nm})^T, A = [v_1 v_2 ... v_m] \rightarrow \cdots \rightarrow U$ (Echelon form by 3ERO): (a) Columns of U with a leading 1 are LI, (b) A column of U without a leading 1 can be written as LC of columns with leading 1's to the left. (c) The same to A.
- **12.** To be able to use Equivalent Statements on $A_{n \times n}$:
 - (a) A is nonsingular; (b) Ax = 0 has only zero solution x = 0 ($\mathcal{N}(A) = \{0\}$);
 - (c) A is row equivalent to I; (d) Ax = b has a unique solution for each $b \in \mathbb{R}^n$; (e) $|A| \neq 0$; (f) Columns/rows of A are LI, span \mathbb{R}^n , form a basis for \mathbb{R}^n .
- 13. To be able to solve problems in $P_n = \text{span}\{1, x, ..., x^n\}$, collect and equit coefficients of like powers, then turn to solve a linear system Ax = b or Ax = 0 or use equivalent statements.
- 14. Coordinates w.r.t. a basis $E = \{v_1, ..., v_n\}$. $[v]_E = (c_1, ..., c_n)^T \in \mathbb{R}^n \Leftrightarrow v = c_1v_1 + ... + c_nv_n$.
- **15.** Transition matrix T from $F = \{u_1, ..., u_n\}$ to $E = \{v_1, ..., v_n\}$. $T = [[u_1]_E[u_2]_E...[u_n]_E]$. $[v]_E = T[v]_F, \forall v \in V.$
- **16.** In \mathbb{R}^n , if $U = [u_1...u_n], V = [v_1...v_n]$ are two bases, then $U[w]_U = V[w]_V$. So from $U \to V$, $[w]_V = V^{-1}U[w]_U$ and from $V \to U$, $[w]_U = U^{-1}V[w]_V$.
- 17. For $A_{m \times n}$, find bases for $\mathcal{N}(A)$, CS(A), RS(A). n = r + k where $k = \dim(\mathcal{N}(A))$ and $r = \operatorname{rank}(A) = \#$ of leading 1's = $\dim(CS(A)) = \dim(RS(A))$.