Math 311-Zhou

Review for Exam I

1. Put $A x=b$ into its augmented matrix $[A \mid b]$. Use three elementary row operations (3ERO): (1) $(i) \leftrightarrow(j),(2) \alpha(i),(3) \alpha(i) \nrightarrow(j)$. (Gauss Elimination and Gauss-Jordan Reduction)
2. Reduce $[A \mid b]$ to its (reduced) Echelon form and determine if $A x=b$ has (1) no solution, (2) unique solution or (3) infinite many solutions. In cases of $(2) /(3)$, find all solutions.
3. Find $A^{-1}, A_{2 \times 2}^{-1}=\frac{1}{d}\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right],(d=|A|)$ or $[A \mid I] \rightarrow \cdots \rightarrow\left[I \mid A^{-1}\right]$ using 3ERO.
4. Evaluate $|A| . \quad n=2,3$, use the diagram. $n=4$, use cofactor expansion along a row/column $|A|=\sum_{k=1}^{n}(-1)^{i+k} a_{i k}\left|M_{i k}\right|=\sum_{k=1}^{n}(-1)^{k+j} a_{k j}\left|M_{k j}\right|$, use properties and 3ERO $(-1, \alpha, 1)$.
5. Vector spaces and subspaces (closed in $\alpha v_{1}+\beta v_{2}$). Find $\mathcal{N}(A) \Leftrightarrow$ solve $A x=0$ for all x.
6. Linear Combination: $c_{1} A_{1}+\cdots c_{n} A_{n}=b \Rightarrow A x=b$ where $x=\left(c_{1}, \ldots, c_{n}\right)^{T}, A=\left[A_{1} \ldots . A_{n}\right]$.
7. Check $S=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. Any $v \in S, v=c_{1} v_{1}+\cdots c_{m} v_{m}$, e.g., $S \subset V=\mathbb{R}^{n}$ and $V=P_{n}$.
8. Linear independent/dependent: ask if $c_{1} v_{1}+\cdots c_{n} v_{n}=0$ has a nonzero solution $\left(c_{1}, \ldots, c_{n}\right)$?
9. Basis $\left\{v_{1}, \ldots, v_{n}\right\}$ to V if (a) $v_{1}, \ldots ., v_{n}$ are LI and (b) $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .(n=\operatorname{dim}(V))$. Given $\left\{u_{1}, \ldots, u_{m}\right\}$ in V with $\operatorname{dim}(V)=n$, LD if $m>n$, cannot span if $m<n$ and LI \Leftrightarrow span if $m=n$.
10. Reduce a spanning set to a basis by (11) and extend a LI set to a basis by $[A I]$ and (11).
11. $v_{1}=\left(a_{11}, a_{21}, \ldots, a_{n 1}\right)^{T}, \ldots v_{m}=\left(a_{1 m}, a_{2 m}, \ldots, a_{n m}\right)^{T}, A=\left[v_{1} v_{2} \ldots v_{m}\right] \rightarrow \cdots \rightarrow U$ (Echelon form by 3ERO): (a) Columns of U with a leading 1 are LI, (b) A column of U without a leading 1 can be written as LC of columns with leading 1's to the left. (c) The same to A.
12. To be able to use Equivalent Statements on $A_{n \times n}$:
(a) A is nonsingular; (b) $A x=0$ has only zero solution $x=0(\mathcal{N}(A)=\{0\})$;
(c) A is row equivalent to I; (d) $A x=b$ has a unique solution for each $b \in \mathbb{R}^{n}$; (e) $|A| \neq 0$; (f) Columns/rows of A are LI, span \mathbb{R}^{n}, form a basis for \mathbb{R}^{n}.
13. To be able to solve problems in $P_{n}=\operatorname{span}\left\{1, x, \ldots, x^{n}\right\}$, collect and equit coefficients of like powers, then turn to solve a linear system $A x=b$ or $A x=0$ or use equivalent statements.
14. Coordinates w.r.t. a basis $E=\left\{v_{1}, \ldots, v_{n}\right\} .[v]_{E}=\left(c_{1}, \ldots, c_{n}\right)^{T} \in \mathbb{R}^{n} \Leftrightarrow v=c_{1} v_{1}+\ldots+c_{n} v_{n}$.
15. Transition matrix T from $F=\left\{u_{1}, \ldots, u_{n}\right\}$ to $E=\left\{v_{1}, . ., v_{n}\right\} . T=\left[\left[u_{1}\right]_{E}\left[u_{2}\right]_{E} \ldots\left[u_{n}\right]_{E}\right]$. $[v]_{E}=T[v]_{F}, \forall v \in V$.
16. In \mathbb{R}^{n}, if $U=\left[u_{1} \ldots u_{n}\right], V=\left[v_{1} \ldots v_{n}\right]$ are two bases, then $U[w]_{U}=V[w]_{V}$.

So from $U \rightarrow V,[w]_{V}=V^{-1} U[w]_{U}$ and from $V \rightarrow U,[w]_{U}=U^{-1} V[w]_{V}$.
17. For $A_{m \times n}$, find bases for $\mathcal{N}(A), C S(A), R S(A)$. $n=r+k$ where $k=\operatorname{dim}(\mathcal{N}(A))$ and $\mathrm{r}=\operatorname{rank}(\mathrm{A})=\#$ of leading 1 's $=\operatorname{dim}(C S(A))=\operatorname{dim}(R S(A))$.

