mu $11-10.3$

$$
\begin{aligned}
& F=M_{i}+N j \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Rightarrow F=(M, N)=\partial f=\left(f_{x}, f_{y}\right)
\end{aligned}
$$

use two equations $\left\{\begin{array}{l}M=f_{x} \\ N=f_{y}\end{array}\right.$ to find f

$$
\begin{aligned}
& F=M_{i}+N_{j}+P k \\
& \nabla \times F=0 \Rightarrow F=\nabla f \Rightarrow(M, N, P)=\left(f_{x}, f_{y}, f_{z}\right)
\end{aligned}
$$

three equations from which we can find f.
Use comparing and matching to find f not adding same terms.

$$
\begin{aligned}
& \text { \#6 } F=\frac{x y^{2}}{\left(1+x^{2}\right)^{2}} i+\frac{x^{2} y}{1+x^{2}} j \\
& \begin{aligned}
\frac{\partial M}{\partial y}=\frac{2 x y}{\left(1+x^{2}\right)^{2}}, \frac{\partial N}{\partial x} & =\frac{2 x y}{1+x^{2}}-\frac{x^{2} y(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2 x y\left(1+x^{2}\right)-2 x^{3} y}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2 x y}{\left(1+x^{2}\right)^{2}}=\frac{\partial M}{\partial y} \Rightarrow \text { conservative }
\end{aligned}
\end{aligned}
$$

T. find f from $F=(M, N)=\nabla f=\left(f_{x}, f_{y}\right)$ ie, $M=f_{x}, N=f_{y}$

$$
\begin{aligned}
f & =\int M d x+\alpha(y)=\int \frac{x y^{2}}{\left(1+x^{2}\right)^{2}} d x+\alpha(y) \\
& =\int N d y+\beta(x)=\int \frac{x^{2} y}{1+x^{2}} d y+\beta(x)=\frac{1}{2} \frac{x^{2} y^{2}}{1+x^{2}}+\beta(x)
\end{aligned}
$$

Use $f_{x}=M$.

$$
\left.\begin{array}{l}
\text { se } f_{x}=M \Rightarrow \\
\frac{x y^{2}}{\left(1+x^{2}\right)^{2}}
\end{array}=\frac{y^{2}}{2}\left(\frac{2 x}{1+x^{2}}-\frac{x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right)^{\prime}(x)=\frac{y^{2}}{2}\left(\frac{2 x\left(1+x^{2}\right)-2 x^{3}}{\left(1+x^{2}\right)^{2}}\right)+\beta^{\prime}(x)\right)
$$

thus

$$
f(x, y)=\frac{1}{2} \frac{x^{2} y^{2}}{1+x^{2}}
$$

check $f_{y}=N=\frac{x^{2} y}{1+x^{2}}, f_{x}=M=\frac{x y^{2}}{\left(1+x^{2}\right)^{2}}$.
symmetric in panel y.
\#5 $F=\left(3 x^{2} \cos ^{2} y+\frac{\left.\frac{y}{1+x^{2} y^{2}}, x^{3} \sin y+\frac{x}{1+x^{2} y^{2}}\right)}{}\right.$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =-3 x^{2} \sin y+\frac{1}{1+x^{2} y^{2}}-\frac{y \cdot 2 x^{2} y}{\left(1+x^{2} y^{2}\right)^{2}} \\
& =-3 x^{2} \sin y+\frac{1+x^{2} y^{2}-2 x^{2} y^{2}}{\left(1+x^{2} y^{2}\right)^{2}} \\
& =-3 x^{2} \sin y+\frac{1-x^{2} y^{2}}{\left(1+x^{2} y^{2}\right)^{2}}
\end{aligned}
$$

$\frac{\partial N}{\partial x}=3 x^{3} \sin y+\frac{1-x^{2} y^{2}}{\left(1+x^{2} y^{2}\right)^{2}} \pm \frac{\partial M}{\partial y}$, not conservative
If $F=\left(-3 x^{2} \cos y+\frac{y}{1+x^{2} y^{2}}, x^{3} \sin y+\frac{x}{1+x^{2} y^{2}}\right)$
then $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Rightarrow$ Conservative.
To find f from $M=f_{x}$ and $N=f_{y} \tan ^{n}\{-1\}(x)$
\#13 $\quad \mathrm{F}=(2 x+y) \imath^{\prime}+(z \cos y z+x) j+(y \cos y z) k$

$$
\begin{aligned}
& \left.\nabla \times F=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x+y & z \cos y z+x & y \cos y z
\end{array}\right| \begin{array}{cc}
i & \frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
& =i(\cos y z-y z \delta i y z)+0 j+k \\
-k-i(\cos y z-y z+i y-z)-0 j=0 \Rightarrow \text { conservative }
\end{array} \right\rvert\, \\
& \begin{aligned}
f & =\int M d x+\alpha(y, z)=\int(2 x+y) d x+\alpha(y, z)=x^{2}+x y+\alpha(y z) \\
& =\int N d y+\beta(x, z)=\int(z \cos y z+x) d y+\beta(x, z)=\sin y z+x y+\beta(x, z) \\
& =\int p d z+\gamma(x, y)=\int y \cos y z d z+\gamma(x, y)=\alpha-y z+\gamma(x, y)
\end{aligned}
\end{aligned}
$$

compare and Match: $\Rightarrow \alpha(y, z)=\sin y z, \beta(x, z)=\otimes \theta^{\wedge}, 2 \gamma(x, y)=x^{\wedge} x^{2} y$

$$
\Rightarrow f(x, y, z)=x^{2}+x y+\sin y z
$$

