Subject § 11.1
C: $\left\{\begin{array}{l}x=x(t), \quad a \leqslant t \leqslant b \text {. describe a curve } C \text { in } \mathbb{R}^{3} . \\ y=y(t), \quad x(t)=x(t) \imath+y(t) j+z(t) k=(x(t), y(t), z(t)) \text {. } \\ z=z(t), \quad\end{array}\right.$
$S:\left\{\begin{array}{l}x=x(s, t),(s, t) \in D, \text { describe a surface in } R^{3} . \\ y=y(s, t), \quad y(s, t)=x(s, t) i+y(s, t) j+z(s, t) k . \\ z=z(s, t),\end{array}\right.$
Ex. S. $\left\{\begin{array}{l}x=a \cos s \sin t \quad(s . t) \in D=[0,2 \pi) x[0, \pi] \\ y=a \sin \sin t\end{array}\right.$ $\begin{array}{ll}y=a \sin s \sin t & \text { describe a sp } \\ z=a \cos t & \text { radius } a>0 .\end{array}$
chicle: $\quad x^{2}+y^{2}+z^{2}=a^{2} \cos ^{2} s \sin ^{2} t+a^{2} \sin ^{2} 5 \sin ^{2} t+a^{2} \cos ^{2} t=a^{2}$,
S transforms a rectangular domain D in \mathbb{R}^{2} into a sphere in \mathbb{R}^{3}.
Ex. T: $\left\{\begin{array}{l}x=a \cos S, \quad 0 \leq s \leq 2 \pi \\ y>a \sin S,-\infty<t<\infty \\ z=l .\end{array}\right.$
describe a circular cylinder surface along z-axis in \mathbb{R}^{3}.

Let $X(s, t)$ be a surface S in $\mathbb{R}^{3},(S, x) \in \mathbb{D}$.
For each fixed t_{0}, for $\left(s, t_{0}\right) \in D, S \rightarrow \chi\left(s, t_{0}\right)$ is a curve on S, called the s-coordinate curve at $t=t_{0}$. Similarly for each fixed $s_{0}, t \rightarrow \chi\left(s_{0}, t\right)$ is the t-coordinate curve at $s=5_{0}$.

Denote $T_{s}\left(s, t_{0}\right)=\frac{\partial x}{\partial s}\left(s_{0}, t_{0}\right)=\frac{\partial x}{\partial s}\left(s_{0}, t_{0}\right) i+\frac{\partial y}{\partial s}\left(s_{0} t_{0}\right) j+\frac{\partial z}{\partial s}\left(s_{0}, t_{0}\right) k$, the tangent of S in S-direction at $\left(s_{0}, t_{0}\right)$. while $T_{t}\left(s_{0}, t_{0}\right)=\frac{\partial X}{\partial t}\left(s_{0}, t_{0}\right)=\frac{\partial x}{\partial t}\left(s_{0} t_{0}\right)_{i}+\frac{\partial y}{\partial t}\left(s_{0} t_{0}\right) j+\frac{\partial z}{\partial t}\left(s_{0}, t_{0}\right) k$. the tangent of S in t-direction at $\left(S_{0}, z_{0}\right)$. $N=T_{s} \times T_{t}$ is the outward normal vector of X at $\left(S_{0}, t_{0}\right)$ or S at $x\left(S_{0}, t_{0}\right)$.
Def: the surface $S=x(D)=\{x(s, t) i+y(s . t h+z(s . t) k$: $(s, t) \in D\}$ is smooth at $X\left(s_{0}, t_{0}\right),\left(s_{0}, t_{0}\right) \in I n+D$, the outward normal $N\left(S_{0, t_{0}}\right)=T_{s}\left(s_{0}, t_{0}\right) \times T_{\pi}\left(s_{0}, x_{0}\right) \neq \theta$.
$S=X(D)$ is smooth, if S is smooth at each $y\left(s_{0}, t_{0}\right)$ $\left(S_{0}, t_{0}\right) \in D$.
Ex: The cone $z^{2}=x^{2}+y^{2} .\left\{\begin{array}{l}x=5 \cos t \\ y=S \sin t \quad 0 \leqslant t \leqslant 2 \pi \\ z=S\end{array}\right.$.

$$
N(s, t)=T_{s}(s, t) x T_{t}(s, t)=\left|\begin{array}{ccc}
i & j & k \\
\cos t & j \sin t & 1 \\
-s \sin t & s \cos t & 0
\end{array}\right|=s(-\cos t,-s \sin t, 1)
$$ Thus $N(s, t)=\theta \Leftrightarrow \delta=0 \Rightarrow \quad(x, y, z)=(0,0,0)$

* The plane T tangent to S at $X\left(S_{0}, t_{0}\right)$ is given by

$$
N\left(s_{0}, t_{\theta}\right) \cdot\left((x, y, z)-x\left(s_{a} t_{\theta}\right)\right)=0 .
$$

If $N\left(s_{0}, t_{0}\right)=(a, b, c)$ and $\gamma\left(s_{0}, x_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right)$, then
$T: \quad a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=\theta$.
Ex: The cone $S: X(s, t)=(S \cos t, s \sin t, S)$.
Find the plane T tangent to S at $x(1, \pi / 2)=(0,1,1)$

$$
\begin{aligned}
& T_{s}(1, \pi / 2)=\left.(\cos t i+\sin t j+k)\right|_{(1, \pi)}=j+k \\
& T_{t}(1, \pi / 8)=(-S \sin t i+S \cos t j)_{(1, \pi)}=-i \quad N=\left|\begin{array}{ccc}
i & j & k \\
0 & 1 & 1 \\
-1 & 0 & 0
\end{array}\right|=-j+k \\
& =(0,-1,1)
\end{aligned}
$$

$T: \quad \theta(x-0)-(y-1)+(z-1)=0$. or $z=y$.

Recall for given vectors u and v,
$\|u \times v\|=$ area of the parallelogram formed by u and v, For a curve $x(t)=(x(t), y(t), z(t)), y^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$, tangent vector to $X(t)$. Arc-lengeh element. $n x^{\prime}(t) \cap d t$. Now for a surface $S:\left\{\begin{array}{l}x=x(s, t) \\ y=y(s, t) \\ z=z(s, t)\end{array} \quad(s, t) \in D\right.$.
$\left\|T_{s} \times T_{t}\right\|=\operatorname{area}$ of the parallelogram formed by T_{s} and T_{t}

$$
\begin{aligned}
\left\|T_{s} \times T_{*}\right\| d s d t & =\text { surface element }=d S \cdots \text { scalar } \\
N(s, t) d s d t & =T_{s} \times T_{t} d s d t=d \vec{S} \cdots \text { vector }
\end{aligned}
$$

$\iint_{D}\left\|T_{s} \times T_{t}\right\| d s d t=$ surface area of S.
Ex. For a sphere of radius a S: $\left\{\begin{array}{l}x=a \cos s \sin t, \\ y=a \sin s \sin t, \\ z=a \cos t,\end{array}\right.$

$$
\begin{aligned}
& T_{s}=(-a \sin s \sin t, a \cos s \sin t, 0) \\
& T_{t}=(a \cos s 0 \cos t, a \sin s \cos t,-a \sin t) \\
& T_{s} \times T_{l}=\left|\begin{array}{ccc}
-a \sin s s_{i n} t & a \cos s \sin t & 0 \\
a \cos s \cos t & a \operatorname{sis} \cos t & -a \sin t
\end{array}\right|=-a^{2} \sin t(\cos s \sin t, \sin s \sin t, \\
& \left\|T_{s} \times T_{t}\right\|=a^{2} \sin t
\end{aligned}
$$

surface area $=\int_{0}^{\pi} \int_{0}^{2 \pi} a^{2} \sin t d s d t=\left.a^{2} 2 \pi(-\cos t)\right|_{0} ^{\pi}=4 a^{2} \pi$
since

$$
N(s, t)=T_{s} \times T_{l}=\frac{\partial(y, z)}{\partial(s, t)} i-\frac{\partial(x, z)}{\partial(s, t)} j+\frac{\partial(x, y)}{\partial(s, x)} k
$$

where $\frac{\partial(u, v)}{\partial(s, t)}=\left|\begin{array}{ll}\frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t}\end{array}\right|=\frac{\partial u}{\partial s} \frac{\partial v}{\partial t}-\frac{\partial u \frac{\partial v}{\partial t} \frac{\partial s}{\partial s}}{}$

$$
\Rightarrow\|N(s, t)\|=\sqrt{\left(\frac{\partial(y, z)}{\partial(s, x)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(s, k)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(s, t)}\right)^{2}}
$$

\Rightarrow surface area $=\iint_{D} \sqrt{\left(\frac{\partial(y, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(s, t)}\right)^{2}} d s d t$.

Ex. Torus. Let $S:\left\{\begin{array}{l}x=(a+b \cos t) \cos S, 0 \leq s . t \leq 2 \pi, \\ y=(a+b \cos t) \sin s\end{array}\right.$
Ex: Torus. Let $S:\left\{\begin{array}{l}x=(a+b \cos t) \sin S, \quad a, b>0 \\ z=b \sin t,\end{array}\right.$

$$
\left.\begin{array}{l}
\frac{\partial(x, y)}{\partial(s, t)}=\left[\left.\begin{array}{ll}
-(a+b \cos t) \sin s & -b \sin t \cos s \\
(a+b \cos t) \cos s & -b \sin t \sin s
\end{array} \right\rvert\,\right. \\
\\
=b(a+b \cos t) \sin t \sin ^{2} s+b(a+b \cos t) \sin t-0^{2} s \\
\\
\\
=b(a+b \cos t) \sin t
\end{array}\right\} \begin{aligned}
\frac{\partial(x, z)}{\partial(s, t)} & =-b(a+b \cos t) \cos t \sin s \\
\frac{\partial(y, z)}{\partial(s, t)} & =b(a+b \cos t) \cos t \cos s,
\end{aligned}
$$

$\|N(s-t)\|=b(a+b \cos t)$

$$
\text { surface area }=\int_{0}^{2 \pi} \int_{0}^{2 \pi} b(a+b \cos t) d t d s=4 a b \pi^{2} \text {. }
$$

when $S: z=f(x, y), x, y \in D \Rightarrow S:\left\{\begin{array}{l}x=S \\ y=t \\ z=f(s, t)\end{array}(s, t) \in D\right.$

$$
\begin{aligned}
& T_{s}=i+f_{s} k, T_{t}=j+f_{t} k \\
& \Rightarrow N(s . t)=T_{s} \times T_{t}=\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & f_{s} \\
0 & 1 & f_{t}
\end{array}\right|=-f_{s} i-f_{t} j+k . \\
& \|N(s . t)\|=\sqrt{f_{x}^{2}+f_{y}^{2}+1 .} \\
& \text { surface area }=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y .
\end{aligned}
$$

$\oint 11.2$
If f is a continuous function defined on $S=X(D)$, then

$$
\iint_{D} f(x(s, t), y(s, t), z(s, t))\left\|T_{s} \times T_{t}\right\| d s d t
$$

is called the scalar surface integral of f an S.
If F is a continuous vector field defined on $S=X(D)$,
then

$$
\iint_{D} F \cdot N d s d t
$$

is called the vector surface integral of F on S.
In particular

$$
\iint_{D} F \cdot n d S=\iint_{D} F \cdot N d S d t
$$

is called the flux of F across $S=X(D)$, out.
Ex: Consider a lateral cylindrical surface

$$
S_{1}: \begin{cases}x=3 \cos s & 0 \leq s \leq 2 \pi, \\ y=3 \sin s & 0 \leq x \leq 15 . \\ z=t . & \end{cases}
$$

S_{2} : bottom: $\left\{\begin{array}{l}x=s \cos t, \\ y=s \sin t, \\ z=0 .\end{array} \quad s_{3}: \operatorname{top}:\left\{\begin{array}{l}x=s \cos t \\ y=s \sin t \\ z=15 .\end{array}\right.\right.$

$$
\theta \leq s \leq 3, \theta \leq t \leq 2 \pi \text {. }
$$

$$
f(x, y, z)=z, \quad I=\iint_{D} f \| N u d s d t=I_{1}+I_{2}+I_{3}, N=T_{s} \times T_{t} .
$$

$$
\begin{aligned}
& S_{1}: T_{s} \times T_{t}=\left|\begin{array}{ccc}
-3 \sin S & 3 \cos s & 0 \\
0 & 0 & 1
\end{array}\right|=3 \cos 3 i+3 \sin s j, \text { horizontal } \\
& \quad\left\|T_{s} \times T_{t}\right\|=3 . \\
& I_{1}=\int_{0}^{2 \pi} \int_{0}^{15} t \cdot 3 d t d s=2 \pi \frac{3}{2} 15^{2}=675 \pi . \\
& S_{2}: f=z=0, \Rightarrow I_{2}=0 \\
& S_{3}: f=z=15 . \quad N=\left|\begin{array}{ccc}
i & j & k \\
\cos t & \sin t & 0 \\
-s \sin t \sin t & 0
\end{array}\right|=s k, \quad\|N\|=s \\
& I_{3}=\int_{0}^{2 \pi} \int_{0}^{3} 15 \cdot s d s d t=30 \pi \frac{9}{2}=135 \pi \\
& \quad I=I_{1}+I_{2}+I_{3}=675 \pi+135 \pi=810 \pi .
\end{aligned}
$$

When $S: Z=g(x, y),(x, y) \in D$, we have

$$
\iint_{D} f(x, y, g(x, y)) \sqrt{g_{x}^{2}+g_{y}^{2}+1} d x d y .
$$

Ex: $S: z=4-x^{2}-y^{2}, \quad D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 4\right\}$

$$
f=4-z
$$

scalar surface

$$
\begin{aligned}
& \iint_{D} f\|N\| d A=\iint_{D}\left(4-\left(4-x^{2}-y^{2}\right)\right) \sqrt{4 x^{2}+4 y^{2}+1} d x d y \\
& =\iint_{D}\left(x^{2}+y^{2}\right) \sqrt{4\left(x^{2}+y^{2}\right)+1} d x d y . \quad \begin{array}{l}
\text { Polar } \quad \text { coordinates }
\end{array}\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
0 \leqslant \theta \leqslant 2 \pi
\end{array}\right. \\
& \begin{array}{ll}
D: & 0 \leqslant \theta \leqslant 2 \pi \\
& 0 \leqslant r \leqslant 2
\end{array} \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r^{2} \sqrt{4 r^{2}+1} r d r d 0: \text { substitute } \\
& 4 r^{2}+1=t \\
& d t=8 r d r \\
& =2 \pi \int_{1}^{17} \frac{t-1}{4} \sqrt{x} \frac{1}{8} d t \\
& \left.\left.r\right|_{0} ^{2} \infty t\right|_{1} ^{17} \\
& =\frac{\pi}{16} \int_{1}^{19}\left(t^{3 / 2}-t^{1 / 2}\right) d t=\cdots \frac{\pi}{16}\left[\frac{2}{5}\left(17^{5 / 2}-1\right)-\frac{2}{3}\left(17^{3 / 2}-1\right)\right]
\end{aligned}
$$

$$
\begin{array}{r}
E x: F=x i+y j+(z-2 y) k, \quad x(s, t)=(s \cos t, s \sin t, t) \\
0 \leqslant s \leqslant 1,0 \leqslant t \leqslant 2 \pi
\end{array}
$$

$$
\begin{aligned}
& \text { Evaluate vector surface integral in } \begin{aligned}
\iint_{D} F \cdot d \vec{S}= & \int_{D} \int_{D} F \cdot N d s d t, \quad N=T_{s} \times T_{t}=\left|\begin{array}{ccc}
\cos t & \sin t & 0 \\
-s \sin t & s \cos t & 1
\end{array}\right| \\
& =\sin t i-\cos t j+s k
\end{aligned} \\
& \int_{0}^{2 \pi} \int_{0}^{1}(s \cos t, S \sin t,(t-2 S \sin t)) \cdot(\sin t,-\cos t, s) d s d t \\
& = \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(S t-2 S^{2} \sin t\right) d s d t \\
& =\int_{0}^{2 \pi}\left(\frac{1}{2} t-\frac{2}{3} \sin t\right) d t=\pi^{2}
\end{aligned}
$$

when $S: z=g(x, y) . \quad \Rightarrow X(x, y)=(x, y, g(x, y))$

$$
\begin{aligned}
& N(s, t)=N(x, y)=T_{x} \times T_{y}=\left|\begin{array}{lll}
i & j & k \\
1 & 0 & g_{x} \\
0 & 1 & g_{y}
\end{array}\right|=\left(-g_{x},-g_{y}, 1\right) \\
& \text { Then }
\end{aligned}
$$

Then

$$
\iint_{D} F \cdot d \vec{S}=\iint_{D} F(x, y, g(x, y)) \cdot\left(-g_{x},-g_{y}, 1\right) d x d y \text {. Add ex }
$$

$\$ 11.3$
stokes' Theorem:
Let S be a bounded pieceuse smooth oriented surface in $\mathbb{R}^{3}, S: X_{\text {(the boundary of } S \text {) }}(s, t)=(x(s, t), z(s, t)),(s, t) \in D, N(s, t) \pm \theta$. and assume ∂S consists finitely many piecewise C 'simple closed curves, $x(s), s \in I$, each of which is oriented

Subject
consistently with $S(N(S, t)$ is to the left)

Let F be a C^{\prime} vectorfield on S, then

$$
\begin{gathered}
\iint_{S} \nabla \times F \cdot d \vec{S}=\oint_{\partial S} F \cdot d \vec{s} \\
\iint_{D} \nabla \times F(\mathbb{Z}(s, t)) \cdot N(S \cdot t) d s d t=\oint F F(x(s)) \cdot x^{\prime}(s) d s . \\
L H S=\text { curl on } S=\text { RHS = circulation along } \partial S .
\end{gathered}
$$

Gauss Theorem (Divergence)
Let D be a bounded solid region in \mathbb{R}^{3} whose boundary $2 D$ consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point a way from D. Let F be a piecewise C^{\prime} vector field on D. Then

$$
\underset{\partial D}{\oiint} F \cdot d \vec{S}=\iiint_{D} \nabla \cdot F d V
$$

Flux across ∂D divergence Total particles cross ∂D out $=$ total partides leave D.

Ex: $S: z=g(x, y)=9-x^{2}-y^{2} \quad(z \geqslant 0) \Rightarrow x^{2}+y^{2} \leqslant 9$

$$
F=(2 z-y)_{i}+(x+z)_{j}+(3 x-2 y) k \quad \Rightarrow \quad D:\left\{\begin{array}{l}
x=r \cos \theta, 0 \leq \theta \leq 2 \pi \\
y=r \sin \theta, 0 \leq r \leq 3 .
\end{array}\right.
$$

verify the Stokes theorem.
$\partial S ; z=0 \Rightarrow x^{2}+y^{2}=9, \Rightarrow x(S)=(3 \cos 53 \sin S, 0)_{0} 0 \leq S \leq 2 \pi$.

$$
\nabla \times F=\left|\begin{array}{ccc}
i & i \not x & \partial \not \partial y \\
\partial z z \\
2 z-y & x+z & 3 x-2 y
\end{array}\right|=-3 i-j+3 k
$$

$$
\begin{aligned}
& N(x, y)=-2_{x} i-g_{y} j+k=2 x i+2 y j+k \\
& L H S=\iint_{S} \nabla x F \cdot d \vec{S}=\iint_{D}(-3,-1, \imath) \cdot(2 x, 2 y, 1) d x d y \\
&=\iint_{D}(-6 x-2 y+i) d x d y=\int_{0}^{2 \sigma} \int_{0}^{3}(-6 r \cos \theta-2 r \sin \theta+2) r d r d \theta \\
&=\int_{0}^{2 \pi}\left(-\frac{27}{3} \cos \theta-\frac{2}{3} 27 \sin \theta+\frac{2}{2} 9\right) d \theta=18 \pi
\end{aligned}
$$

$$
\begin{aligned}
\text { VHS } & =\oint F \cdot d \vec{s}=\int_{0}^{2 \pi} F(x(s)) \cdot x^{\prime}(s) d s \\
& =\int_{0}^{2 \pi}(-3 \sin s, 3 \cos s, 9 \cos s-6 \sin s) \cdot(-3 \sin s, 3 \cos s, 0) d s \\
& =\int_{0}^{2 \pi}\left(9 \sin ^{2} s+9 \cos ^{2} s\right) d s=18 \pi=\angle H S .
\end{aligned}
$$

*Ex: Given $S: z=g(x, y)=e^{-\left(x^{2}+y^{2}\right)}, z \geq \frac{1}{e}$

$$
F=\left(e^{y+z}-2 y\right) i+\left(x e^{y+z}+y\right) j+e^{x+y} k \quad: D=\left\{(x, y): x^{2}+y^{2} \leqslant 1\right\} .
$$

Evaluate $\iint_{S} \nabla \times F \cdot d \vec{S}=\oint F \cdot d \vec{s}: \partial\left\{\begin{array}{l}x=\cos \theta, \\ y=\sin \theta, 0 \leq \theta \leq 2 \pi . \\ z=1 / e .\end{array}\right.$

$$
\nabla \times F=\left(e^{x+y}-x e^{y+z}\right) i+\left(e^{y+z}-e^{x+y}\right) j+z k
$$

Both LHS and RHS are too hard to do.

* Create an easy surface $S_{1}: X(r, \theta)= \begin{cases}x=r \cos \theta & 0 \leqslant r \leqslant 1 \\ y=r \sin \theta & 0 \leqslant \theta \leqslant 2 \pi \\ z=\frac{1}{e}\end{cases}$
a flat disk with $\partial S_{1}=$ OS.
Note now $N(r, \theta)=+r k=\left|\begin{array}{ccc}i & j & k \\ \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 0\end{array}\right|$
then LHS $=\iint_{S_{1}} \nabla \times F \cdot N(r, \theta) d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 2 r d r d \theta=2|S|=.2 \pi$.
Ex: Let $S: z=\left(1-x^{2}-y^{2}\right) e^{\left(1-x^{2}-3 y^{2}\right)}, \quad z \geqslant 0$

$$
F=e^{y} \cos z_{i}+\sqrt{x^{3}+1} \sin z j+\left(x^{2}+y^{2}+3\right) k
$$

Ask $\iint_{S} F \cdot d \stackrel{\rightharpoonup}{S}$, too hard to do it directly.
So add $S^{\prime}: x^{2}+y^{2} \leqslant 1, z=0 _N=-k,\left\{\begin{array}{l}x=r \cos \theta, 0 \leqslant r \leqslant 1 \\ y=r \sin \theta, 0 \leqslant \theta \leqslant 2 \pi \text {. }\end{array}\right.$ Then by the Stokes theorem (divergence)

$$
\iint_{\delta} F \cdot d \vec{S}+\iint_{S^{\prime}} F \cdot d \vec{S}=\iiint_{D} \nabla \cdot F d V \quad \text { but } \nabla \cdot F=0
$$

Thus

$$
\iint_{S} F \cdot d \vec{S}=-\iint_{S^{\prime}} F \cdot d \vec{S}=\int_{0}^{2 \pi} \int_{0}^{1}\left(r^{2}+3\right) r d r d \theta=2 \pi\left(\frac{1}{4}+\frac{3}{2}\right)=\frac{7}{2} \pi
$$

Ex: Given
$D: x^{2}+y^{2} \leqslant a^{2}, \quad 0 \leqslant z \leqslant b$,
SI: $x^{2}+y^{2}=a^{2}, 0 \leq z \leq b$,
$S_{2}, x^{2}+y^{2} \leq a^{2}, z=b$.

$$
S_{3}: x^{2}+y^{2} \leqslant a^{2}, z=0 .
$$

$F=x_{i}+y_{j}+z k$. Verify the Gauss theorem.
To find N for S_{1}, S_{2}, S_{3}, we write

$$
S_{1}:\left\{\begin{array}{l}
x=a \cos s, 0 \leqslant s \leqslant 2 \pi \\
y=a \sin , 0 \leqslant t \leqslant b \\
z=t,
\end{array}, S_{2}\left(S_{3}\right)\left\{\begin{array}{l}
x=t \cos S, 0 \leqslant t \leqslant a \\
y=t \sin S, \quad 0 \leqslant s \leqslant 2 \pi . \\
z=b(\theta) .
\end{array}\right.\right.
$$

\Rightarrow For $S_{1}: N>a \cos s_{i}^{i}+a \sin S_{j}, S_{2}: N=t k, S_{3}: N=-t k$

$$
\begin{aligned}
L H S & =\oiint_{\partial D} F \cdot d \vec{S}=\left(\iint_{S}+\iint_{S_{2}}+\iint_{S 3}\right) F \cdot d \vec{S} \\
& =\int_{0}^{2 \pi} \int_{0}^{b}\left(a^{2} \cos ^{2} s+a^{2} \sin ^{2} s\right) d s d t+\int_{0}^{2 \pi} \int_{0}^{a} b t d t d s+\int_{0}^{2 \pi} \int_{0}^{a}-0 \cdot t d t d s \\
& =2 \pi a^{2} b+\pi a^{2} b+0=3 \pi a^{2} b . \\
R H S & =\iiint_{D} \nabla \cdot F d V=\iiint_{D}(1+1+1) d v=3|D|=3 a^{2} \pi b=L H S .
\end{aligned}
$$

* If D is a region and $F=x_{i}+y_{j}+z k$, then

$$
\frac{1}{3} \int_{\partial D} F \cdot d \vec{S}=\frac{1}{3} \iiint_{D} \nabla \cdot F d v=\iiint_{D} d v=|D|=v_{0} \text { lune. }
$$

