Matrices and Systems of Equations

$$2x_1 + x_2 = 3$$

 $4x_1 + 3x_2 = 5$ and $2x_1 + x_2 = -1$
 $4x_1 + 3x_2 = 1$

have the same coefficient matrix but different righthand sides. Solve both systems simultaneously by eliminating the first entry in the second row of the augmented matrix

$$\begin{bmatrix} 2 & 1 & 3 & -1 \\ 4 & 3 & 5 & 1 \end{bmatrix}$$

and then performing back substitutions for each of the columns corresponding to the right-hand sides.

8. Solve the two systems

$$x_1 + 2x_2 - 2x_3 = 1$$
 $x_1 + 2x_2 - 2x_3 = 9$
 $2x_1 + 5x_2 + x_3 = 9$ $2x_1 + 5x_2 + x_3 = 9$
 $x_1 + 3x_2 + 4x_3 = 9$ $x_1 + 3x_2 + 4x_3 = -2$

by doing elimination on a 3×5 augmented matrix and then performing two back substitutions.

7. The two systems are a great as the system of the form

$$-m_1 x_1 + x_2 = b_1$$

$$-m_2 x_1 + x_2 = b_2$$

where m_1 , m_2 , b_1 , and b_2 are constants,

- (a) Show that the system will have a unique solu tion if $m_1 \neq m_2$.
- (b) Show that if $m_1 = m_2$, then the system will be consistent only if $b_1 = b_2$.
- (c) Give a geometric interpretation of parts (a) and (b). our natulos diffi

10. Consider a system of the form

$$a_{11}x_1 + a_{12}x_2 = 0$$

$$a_{21}x_1 + a_{22}x_2 = 0$$

where a_{11} , a_{12} , a_{21} , and a_{22} are constants. Explai why a system of this form must be consistent.

11. Give a geometrical interpretation of a linear equ tion in three unknowns. Give a geometrical d scription of the possible solution sets for a 3 × linear system.