SECTION 2 EXERCISES

1. Which of the matrices that follow are in row echelon form? Which are in reduced row echelon form?

(a)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{array}{ccc} \textbf{(b)} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{array}$$

(c)
$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{pmatrix}
\mathbf{d} & 0 & 1 \\
0 & 0 \\
0 & 0
\end{pmatrix}$$

(e)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$(f) \begin{bmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\begin{array}{ccccc}
\mathbf{(h)} & \begin{bmatrix} 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\end{array}$$

2. The augmented matrices that follow are in row echelon form. For each case, indicate whether the corresponding linear system is consistent. If the system has a unique solution, find it.

the system is consistent and involves no free vari-

(a)
$$\begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 3 & | & 1 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 & -2 & 4 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & -2 & 2 & | -2 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 3 & 2 & | & -2 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$