8. Consider a linear system whose augmented matrix is of the form

For what values of a will the system have a unique solution?

9. Consider a linear system whose augmented matrix is of the form

-101 and normal
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 3 & 0 \\ -1 & 1 & \beta & 0 \end{bmatrix}$$

- (a) Is it possible for the system to be inconsistent? Explain.
- (b) For what values of β will the system have infinitely many solutions?
- **10.** Consider a linear system whose augmented matrix is of the form

$$\begin{bmatrix}
 1 & 1 & 3 & 2 \\
 1 & 2 & 4 & 3 \\
 1 & 3 & a & b
 \end{bmatrix}$$

- (a) For what values of a and b will the system have infinitely many solutions?
- (b) For what values of a and b will the system be inconsistent?

11. Given the linear systems

(a)
$$x_1 + 2x_2 = 2$$
 (b) $x_1 + 2x_2 = 1$ $3x_1 + 7x_2 = 8$ $3x_1 + 7x_2 = 7$

solve both systems by incorporating the right-hand sides into a 2×2 matrix B and computing the reduced row echelon form of

$$(A|B) = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 7 & 8 & 7 \end{bmatrix}$$

12. Given the linear systems

(a)
$$x_1 + 2x_2 + x_3 = 2$$

 $-x_1 - x_2 + 2x_3 = 3$
 $2x_1 + 3x_2 = 0$

(b)
$$x_1 + 2x_2 + x_3 = -1$$

 $-x_1 - x_2 + 2x_3 = 2$
 $2x_1 + 3x_2 = -2$

solve both systems by computing the row echelon form of an augmented matrix (A|B) and performing back substitution twice.

- 13. Given a homogeneous system of linear equations, if the system is overdetermined, what are the possibilities as to the number of solutions? Explain.
- 14. Given a nonhomogeneous system of linear equations, if the system is underdetermined, what are the possibilities as to the number of solutions? Explain.
- 15. Determine the values of x_1 , x_2 , x_3 , and x_4 for the following traffic flow diagram:

16. Consider the traffic flow diagram that followhere a_1 , a_2 , a_3 , a_4 , b_1 , b_2 , b_3 , b_4 are fixed positintegers. Set up a linear system in the unknowns x_2 , x_3 , x_4 and show that the system will be content if and only if

$$a_1 + a_2 + a_3 + a_4 = b_1 + b_2 + b_3 + b_4$$

What can you conclude about the number of