SECTION 4 EXERCISES

1. Explain why each of the following algebraic rules will not work in general when the real numbers a and b are replaced by $n \times n$ matrices A and B.

(a)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(b)
$$(a+b)(a-b) = a^2 - b^2$$

- 2. Will the rules in Exercise 1 work if a is replaced by an $n \times n$ matrix A and b is replaced by the $n \times n$ identity matrix 1?
- 3. Find nonzero 2 × 2 matrices A and B such that AB = 0.
- 4. Find nonzero matrices A, B, and C such that

$$AC = BC$$
 and $A \neq B$

5. The matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

has the property that $A^2 = O$. Is it possible for a nonzero symmetric 2 × 2 matrix to have this property? Prove your answer.

6. Prove the associative law of multiplication for 2 × 2 matrices: that is, let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix},$$
$$C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

and show that

$$(AB)C = A(BC)$$

7. Let

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Compute A^2 and A^3 . What will A^n turn out to be?

8. Let

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Compute A2 and A3. What will A2n and A2n+1 turn out to be?

9. Let

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Show that $A^n = O$ for $n \ge 4$.

- 10. Let A and B be symmetric $n \times n$ matrices. For each of the following, determine whether the given matrix must be symmetric or could be nonsymmetric:
 - (a) C = A + B

(b)
$$D = A^2$$

(c) E = AB

(d)
$$F = ABA$$

(e) G = AB + BA

(f)
$$H = AB - BA$$

 Let C be a nonsymmetric n × n matrix. For each of the following, determine whether the given matrix must be symmetric or could be nonsymmetric:

(a)
$$A = C + C^T$$

(b)
$$B = C - C^T$$

(c) D = C^TC

(d)
$$E = C^T C - CC^T$$

(e)
$$F = (I + C)(I + C^T)$$

(f)
$$G = (I + C)(I - C^T)$$

12) Let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Show that if $d = a_{11}a_{22} - a_{21}a_{12} \neq 0$, then

$$A^{-1} = \frac{1}{d} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

(13) Use the result from Exercise 12 to find the inverse of each of the following matrices:

(a)
$$\begin{bmatrix} 7 & 2 \\ 3 & 1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 7 & 2 \\ 3 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix}$

Let A and B be n x n matrices. Show that if

$$AB = A$$
 and $B \neq I$

then A must be singular.

- Let A be a nonsingular matrix. Show that A⁻¹ is also nonsingular and $(A^{-1})^{-1} = A$.
- 16. Prove that if A is nonsingular, then A^T is nonsingular and

$$(A^T)^{-1} = (A^{-1})^T$$

[Hint: $(AB)^T = B^T A^T$.]

(17.) Let A be an $n \times n$ matrix and let x and y be vectors in \mathbb{R}^n . Show that if $A\mathbf{x} = A\mathbf{y}$ and $\mathbf{x} \neq \mathbf{y}$, then the matrix A must be singular.