Let A be a nonsingular n × n matrix. Use mathematical induction to prove that Aⁿ is nonsingular and

$$(A^n)^{-1} = (A^{-1})^n$$

for m = 1, 2, 3, ...

- Let A be an n x n matrix. Show that if A² = O, then I - A is nonsingular and (I - A)⁻¹ = I + A.
- Let A be an n × n matrix. Show that if A^{k+1} = O, then I − A is nonsingular and

$$(I - A)^{-1} = I + A + A^2 + \dots + A^k$$

21. Given

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

show that R is nonsingular and $R^{-1} = R^T$.

22. An n × n matrix A is said to be an involution if A² = I. Show that if G is any matrix of the form

$$G = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

then G is an involution.

- Let u be a unit vector in Rⁿ (i.e., u^Tu = 1) and let H = I - 2uu^T. Show that H is an involution.
- 24. A matrix A is said to be idempotent if A² = A. Show that each of the following matrices are idempotent:

(a)
$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

(c)
$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- 25. Let A be an idempotent matrix.
 - (a) Show that I − A is also idempotent.
 - (b) Show that I + A is nonsingular and $(I + A)^{-1} = I \frac{1}{2}A$
- Let D be an n × n diagonal matrix whose diagonal entries are either 0 or 1.
 - (a) Show that D is idempotent.
 - (b) Show that if X is a nonsingular matrix and A = XDX⁻¹, then A is idempotent.
- 27. Let A be an involution matrix, and let

$$B = \frac{1}{2}(I + A)$$
 and $C = \frac{1}{2}(I - A)$

Show that B and C are both idempotent and BC = O.

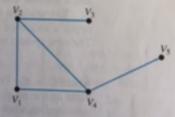
- Let A be an m × n matrix. Show that A^TA and AA^T are both symmetric.
- Let A and B be symmetric n × n matrices. Prove that AB = BA if and only if AB is also symmetric.
- 30. Let A be an $n \times n$ matrix and let

$$B = A + A^T$$
 and $C = A - A^T$

- (a) Show that B is symmetric and C is skew symmetric.
- (b) Show that every n × n matrix can be represented as a sum of a symmetric matrix and a skew-symmetric matrix.
- 31. In Application 1, how many married women and how many single women will there be after 3 years?
- 32. Consider the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- (a) Draw a graph that has A as its adjacency matrix. Be sure to label the vertices of the graph.
- (b) By inspecting the graph, determine the number of walks of length 2 from V₂ to V₃ and from V₂ to V₄.
- (e) Compute the second row of A³, and use it to determine the number of walks of length 3 from V₂ to V₃ and from V₂ to V₅.
- 33. Consider the graph



- (a) Determine the adjacency matrix A of the graph.
- (b) Compute A². What do the entries in the first row of A² tell you about walks of length 2 that start from V₁?
- (c) Compute A³. How many walks of length 3 are there from V₂ to V₄? How many walks of length less than or equal to 3 are there from V₂