and hence they form a basis for V. The matrix S is the transition matrix corresponding to the change from the ordered basis $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ to $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. In many applied problems, it is important to use the right type of basis for the particular application. You may consider a number of applications involving the eigenvalues and eigenvectors associated with an $n \times n$ matrix A. The key to solving these types of problems is to switch to a basis for \mathbb{R}^n consisting of eigenvectors of A. ## SECTION 5 EXERCISES - For each of the following, find the transition matrix corresponding to the change of basis from {u₁, u₂} to {e₁, e₂}: - (a) $\mathbf{u}_1 = (1, 1)^T$, $\mathbf{u}_2 = (-1, 1)^T$ - **(b)** $\mathbf{u}_1 = (1, 2)^T$, $\mathbf{u}_2 = (2, 5)^T$ - (c) $\mathbf{u}_1 = (0, 1)^T$, $\mathbf{u}_2 = (1, 0)^T$ - For each of the ordered bases {u₁, u₂} in Exercise 1, find the transition matrix corresponding to the change of basis from {e₁, e₂} to {u₁, u₂}. - 3. Let v₁ = (3, 2)^T and v₂ = (4, 3)^T. For each ordered basis {u₁, u₂} given in Exercise 1, find the transition matrix from {v₁, v₂} to {u₁, u₂}. - Let E = [(5, 3)^T, (3, 2)^T] and let x = (1, 1)^T, y = (1, -1)^T, and z = (10, 7)^T. Determine the values of [x]_E, [y]_E, and [z]_E. - (5) Let $\mathbf{u}_1 = (1, 1, 1)^T$, $\mathbf{u}_2 = (1, 2, 2)^T$, $\mathbf{u}_3 = (2, 3, 4)^T$. - (a) Find the transition matrix corresponding to the change of basis from {e₁, e₂, e₃} to {u₁, u₂, u₃}. - (b) Find the coordinates of each of the following vectors with respect to {u₁, u₂, u₃}: - (i) $(3, 2, 5)^T$ (ii) $(1, 1, 2)^T$ (iii) $(2, 3, 2)^T$ - 6. Let $\mathbf{v}_1 = (4, 6, 7)^T$, $\mathbf{v}_2 = (0, 1, 1)^T$, $\mathbf{v}_3 = (0, 1, 2)^T$, and let \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 be the vectors given in Exercise 5. - (a) Find the transition matrix from $\{v_1, v_2, v_3\}$ to $\{u_1, u_2, u_3\}$. - (b) If x = 2v₁ + 3v₂ 4v₃, determine the coordinates of x with respect to {u₁, u₂, u₃}. 7. Given $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad S = \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix}$$ find vectors \mathbf{w}_1 and \mathbf{w}_2 so that S will be the transition matrix from $\{\mathbf{w}_1, \mathbf{w}_2\}$ to $\{\mathbf{v}_1, \mathbf{v}_2\}$. 8. Given $$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad S = \begin{bmatrix} 4 & 1 \\ 2 & 1 \end{bmatrix}$$ find vectors \mathbf{u}_1 and \mathbf{u}_2 so that S will be the transition matrix from $\{\mathbf{v}_1, \mathbf{v}_2\}$ to $\{\mathbf{u}_1, \mathbf{u}_2\}$. - 9. Let [x, 1] and [2x 1, 2x + 1] be ordered bases for P_2 . - (a) Find the transition matrix representing the change in coordinates from [2x - 1, 2x + 1] to [x, 1]. - (b) Find the transition matrix representing the change in coordinates from [x, 1] to [2x 1, 2x + 1]. - (10) Find the transition matrix representing the change of coordinates on P₃ from the ordered basis [1, x, x²] to the ordered basis $$[1, 1+x, 1+x+x^2]$$ 11. Let $E = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ and $F = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be two ordered bases for \mathbb{R}^n , and set $$U = (\mathbf{u}_1, \dots, \mathbf{u}_n), \quad V = (\mathbf{v}_1, \dots, \mathbf{v}_n)$$ Show that the transition matrix from E to F can be determined by calculating the reduced row echelon form of (V|U).