SECTION I EXERCISES

- 1. Show that each of the following are linear operators on R2. Describe geometrically what each linear transformation accomplishes.
 - (a) $L(\mathbf{x}) = (-x_1, x_2)^T$
- (b) $L(\mathbf{x}) = -\mathbf{x}$
- (c) $L(\mathbf{x}) = (x_2, x_1)^T$ (d) $L(\mathbf{x}) = \frac{1}{2}\mathbf{x}$
- (e) $L(\mathbf{x}) = x_2 \mathbf{e}_2$
- 2. Let L be the linear operator on \mathbb{R}^2 defined by

$$L(\mathbf{x}) = (x_1 \cos \alpha - x_2 \sin \alpha, \ x_1 \sin \alpha + x_2 \cos \alpha)^T$$

Express x_1 , x_2 , and $L(\mathbf{x})$ in terms of polar coordinates. Describe geometrically the effect of the linear transformation.

3. Let a be a fixed nonzero vector in \mathbb{R}^2 . A mapping of the form

$$L(\mathbf{x}) = \mathbf{x} + \mathbf{a}$$

is called a translation. Show that a translation is not a linear operator. Illustrate geometrically the effect of a translation.

4. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator. If

$$L((1,2)^T) = (-2,3)^T$$

and

$$L((1,-1)^T) = (5,2)^T$$

find the value of $L((7,5)^T)$.

- 5. Determine whether the following are linear transformations from \mathbb{R}^3 into \mathbb{R}^2 :
 - (a) $L(\mathbf{x}) = (x_2, x_3)^T$
- **(b)** $L(\mathbf{x}) = (0,0)^T$
- (c) $L(\mathbf{x}) = (1 + x_1, x_2)^T$
- (d) $L(\mathbf{x}) = (x_3, x_1 + x_2)^T$
- 6. Determine whether the following are linear transformations from \mathbb{R}^2 into \mathbb{R}^3 :
 - (a) $L(\mathbf{x}) = (x_1, x_2, 1)^T$
 - **(b)** $L(\mathbf{x}) = (x_1, x_2, x_1 + 2x_2)^T$

- (c) $L(\mathbf{x}) = (x_1, 0, 0)^T$
- (d) $L(\mathbf{x}) = (x_1, x_2, x_1^2 + x_2^2)^T$
- 7. Determine whether the following are linear operators on $\mathbb{R}^{n\times n}$:
 - (a) L(A) = 2A
- **(b)** $L(A) = A^T$
- (c) L(A) = A + I
- (d) $L(A) = A A^T$
- 8. Let C be a fixed $n \times n$ matrix. Determine whether the following are linear operators on $\mathbb{R}^{n \times n}$:
 - (a) L(A) = CA + AC (b) $L(A) = C^2A$
 - (c) $L(A) = A^2C$
- 9. Determine whether the following are linear transformations from P_2 to P_3 :
 - (a) L(p(x)) = xp(x)
 - **(b)** $L(p(x)) = x^2 + p(x)$
 - (c) $L(p(x)) = p(x) + xp(x) + x^2p'(x)$
- 10. For each $f \in C[0, 1]$, define L(f) = F, where

$$F(x) = \int_0^x f(t) dt \qquad 0 \le x \le 1$$

Show that L is a linear operator on C[0, 1] and then find $L(e^x)$ and $L(x^2)$.

- 11. Determine whether the following are linear transformations from C[0, 1] into \mathbb{R}^1 :
 - (a) L(f) = f(0)
- (b) L(f) = |f(0)|
- (c) L(f) = [f(0) + f(1)]/2
- (d) $L(f) = \left\{ \int_0^1 [f(x)]^2 dx \right\}^{1/2}$
- 12. Use mathematical induction to prove that if L is a linear transformation from V to W, then

$$L(\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \dots + \alpha_n\mathbf{v}_n)$$

$$= \alpha_1L(\mathbf{v}_1) + \alpha_2L(\mathbf{v}_2) + \dots + \alpha_nL(\mathbf{v}_n)$$