SECTION 2 EXERCISES

- 1. Refer to Exercise 1 of Section 1. For each linear transformation L, find the standard matrix representation of L.
- 2. For each of the following linear transformations L mapping \mathbb{R}^3 into \mathbb{R}^2 , find a matrix A such that If $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^3 :
 - (a) $L((x_1, x_2, x_3)^T) = (x_1 + x_2, 0)^T$
 - **(b)** $L((x_1, x_2, x_3)^T) = (x_1, x_2)^T$
 - (c) $L((x_1, x_2, x_3)^T) = (x_2 x_1, x_3 x_2)^T$
 - 3. For each of the following linear operators L on \mathbb{R}^3 . find a matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in
 - (a) $L((x_1, x_2, x_3)^T) = (x_3, x_2, x_1)^T$
 - **(b)** $L((x_1, x_2, x_3)^T) = (x_1, x_1 + x_2, x_1 + x_2 + x_3)^T$
 - (c) $L((x_1, x_2, x_3)^T) = (2x_3, x_2 + 3x_1, 2x_1 x_3)^T$

4. Let L be the linear operator on \mathbb{R}^3 defined by

$$L(\mathbf{x}) = \begin{cases} 2x_1 - x_2 - x_3 \\ 2x_2 - x_1 - x_3 \\ 2x_3 - x_1 - x_2 \end{cases}$$

Determine the standard matrix representation A of L, and use A to find $L(\mathbf{x})$ for each of the following vectors x:

(a)
$$\mathbf{x} = (1, 1, 1)^T$$
 (b) $\mathbf{x} = (2, 1, 1)^T$

(b)
$$\mathbf{x} = (2, 1, 1)^T$$

(c)
$$\mathbf{x} = (-5, 3, 2)^T$$

- 5. Find the standard matrix representation for each of the following linear operators:
 - (a) L is the linear operator that rotates each x in \mathbb{R}^2 by 45° in the clockwise direction.