13. Let L be the linear transformation mapping P_2 into \mathbb{R}^2 defined by

$$L(p(x)) = \left[\int_0^1 \frac{p(x) \, dx}{p(0)} \right]$$

Find a matrix A such that

$$L(\alpha + \beta x) = A \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

14. The linear transformation L defined by

$$L(p(x)) = p'(x) + p(0)$$

maps P_3 into P_2 . Find the matrix representation of L with respect to the ordered bases $[x^2, x, 1]$ and [2, 1-x]. For each of the following vectors p(x)in P_3 , find the coordinates of L(p(x)) with respect to the ordered basis [2, 1-x]:

(a)
$$x^2 + 2x - 3$$
 (b) $x^2 + 1$

(b)
$$x^2 + 1$$

(c)
$$3x$$
 (d) $4x^2 + 2x$

- 15. Let S be the subspace of C[a, b] spanned by e^x . xe^x , and x^2e^x . Let D be the differentiation operator of S. Find the matrix representing D with respect to $[e^x, xe^x, x^2e^x]$.
- 16. Let L be a linear operator on \mathbb{R}^n . Suppose that $L(\mathbf{x}) = \mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$. Let A be the matrix representing L with respect to the standard basis $\{e_1, e_2, \ldots, e_n\}$. Show that A is singular.
- 17. Let L be a linear operator on a vector space V. Let A be the matrix representing L with respect to the ordered basis $\{v_1, \ldots, v_n\}$ of V, that is,

 $L(\mathbf{v}_j) = \sum_{i=1}^n a_{ij} \mathbf{v}_i, \ j = 1, \dots, n.$ Show that A^m is the matrix representing L^m with respect to $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}.$

18. Let $E = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ and $F = {\mathbf{b}_1, \mathbf{b}_2}$, where

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

and

$$\mathbf{b}_1 = (1, -1)^T, \quad \mathbf{b}_2 = (2, -1)^T$$

For each of the following linear transformations L from \mathbb{R}^3 into \mathbb{R}^2 , find the matrix representing L with respect to the ordered bases E and F:

- (a) $L(\mathbf{x}) = (x_3, x_1)^T$
- **(b)** $L(\mathbf{x}) = (x_1 + x_2, x_1 x_3)^T$
- (c) $L(\mathbf{x}) = (2x_2, -x_1)^T$
- 19. Suppose that $L_1: V \to W$ and $L_2: W \to Z$ are linear transformations and E, F, and G are ordered bases for V, W, and Z, respectively. Show that, if A represents L_1 relative to E and F and B represents L_2 relative to F and G, then the matrix C = BA represents $L_2 \circ L_1 : V \to Z$ relative to E and G. [Hint: Show that $BA[\mathbf{v}]_E = [(L_2 \circ L_1)(\mathbf{v})]_G$ for all $\mathbf{v} \in V$.
- **20.** Let *V* and *W* be vector spaces with ordered bases E and F, respectively. If $L: V \to W$ is a linear transformation and A is the matrix representing L relative to E and F, show that
 - (a) $\mathbf{v} \in \ker(L)$ if and only if $[\mathbf{v}]_E \in N(A)$.
 - (b) $\mathbf{w} \in L(V)$ if and only if $[\mathbf{w}]_F$ is in the column space of A.