and let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$

Find the transition matrix V corresponding to a change of basis from $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, and use it to determine the matrix B representing L with respect to $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

5. Let L be the operator on P_3 defined by

$$L(p(x)) = xp'(x) + p''(x)$$

- (a) Find the matrix A representing L with respect to $[1, x, x^2]$.
- (b) Find the matrix B representing L with respect to $[1, x, 1 + x^2]$.
- (c) Find the matrix S such that $B = S^{-1}AS$.
- (d) If $p(x) = a_0 + a_1 x + a_2 (1 + x^2)$, calculate $L^n(p(x))$.
- **6.** Let V be the subspace of C[a, b] spanned by $1, e^x, e^{-x}$, and let D be the differentiation operator on V.
 - (a) Find the transition matrix S representing the change of coordinates from the ordered basis $[1, e^x, e^{-x}]$ to the ordered basis $[1, \cosh x, \sinh x]$. $[\cosh x = \frac{1}{2}(e^x + e^{-x}), \sinh x = \frac{1}{2}(e^x e^{-x}).]$
 - (b) Find the matrix A representing D with respect to the ordered basis $[1, \cosh x, \sinh x]$.
 - (c) Find the matrix B representing D with respect to $[1, e^x, e^{-x}]$.
 - (d) Verify that $B = S^{-1}AS$.
- 7. Prove that if A is similar to B and B is similar to C, then A is similar to C.
- 8. Suppose that $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix with diagonal elements $\lambda_1, \lambda_2, \ldots, \lambda_n$.

- (a) Show that $As_i = \lambda_i s_i$, i = 1, ..., n.
- **(b)** Show that if $\mathbf{x} = \alpha_1 \mathbf{s}_1 + \alpha_2 \mathbf{s}_2 + \cdots + \alpha_n \mathbf{s}_n$, then

$$A^k \mathbf{x} = \alpha_1 \lambda_1^k \mathbf{s}_1 + \alpha_2 \lambda_2^k \mathbf{s}_2 + \dots + \alpha_n \lambda_n^k \mathbf{s}_n$$

- (c) Suppose that $|\lambda_i| < 1$ for i = 1, ..., n. What happens to $A^k \mathbf{x}$ as $k \to \infty$? Explain.
- 9. Suppose that A = ST, where S is nonsingular. Let B = TS. Show that B is similar to A.
- 10. Let A and B be $n \times n$ matrices. Show that if A is similar to B, then there exist $n \times n$ matrices S and T, with S nonsingular, such that

$$A = ST$$
 and $B = TS$

- 11. Show that if A and B are similar matrices, then det(A) = det(B).
- 12. Let A and B be similar matrices. Show that
 - (a) A^T and B^T are similar.
 - (b) A^k and B^k are similar for each positive integer k.
- 13. Show that if A is similar to B and A is nonsingular, then B must also be nonsingular and A^{-1} and B^{-1} are similar.
- 14. Let A and B be similar matrices and let λ be any scalar. Show that
 - (a) $A \lambda I$ and $B \lambda I$ are similar.
 - **(b)** $\det(A \lambda I) = \det(B \lambda I)$.
- **15.** The *trace* of an $n \times n$ matrix A, denoted tr(A), is the sum of its diagonal entries; that is,

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$$

Show that

- (a) tr(AB) = tr(BA)
- (b) if A is similar to B, then tr(A) = tr(B).