SECTION I EXERCISES

- 1. Find the angle between the vectors v and w in each of the following:
 - (a) $\mathbf{v} = (2, 1, 3)^T, \mathbf{w} = (6, 3, 9)^T$
 - (b) $\mathbf{v} = (2, -3)^T$, $\mathbf{w} = (3, 2)^T$
 - (c) $\mathbf{v} = (4, 1)^T, \mathbf{w} = (3, 2)^T$
 - (d) $\mathbf{v} = (-2, 3, 1)^T, \mathbf{w} = (1, 2, 4)^T$
- 2. For each pair of vectors in Exercise 1, find the scalar projection of v onto w. Also, find the vector projection of v onto w.
- 3. For each of the following pairs of vectors x and y, find the vector projection p of x onto y and verify that \mathbf{p} and $\mathbf{x} - \mathbf{p}$ are orthogonal:
 - (a) $\mathbf{x} = (3, 4)^T, \mathbf{y} = (1, 0)^T$
 - **(b)** $\mathbf{x} = (3, 5)^T, \mathbf{y} = (1, 1)^T$
 - (c) $\mathbf{x} = (2, 4, 3)^T, \mathbf{y} = (1, 1, 1)^T$
 - (d) $\mathbf{x} = (2, -5, 4)^T, \mathbf{y} = (1, 2, -1)^T$
- **4.** Let x and y be linearly independent vectors in \mathbb{R}^2 . conclude about the possible values of $|\mathbf{x}^T \mathbf{y}|$? plane 2x + 2y + z = 0.

- 5. Find the point on the line y = 2x that is closest to the point (5, 2).
- 6. Find the point on the line y = 2x + 1 that is closest to the point (5, 2).
- 7. Find the distance from the point (1, 2) to the line 4x - 3y = 0.
- 8. In each of the following, find the equation of the plane normal to the given vector N and passing through the point P_0 :
 - (a) $N = (2, 4, 3)^T$, $P_0 = (0, 0, 0)$
 - **(b)** $\mathbf{N} = (-3, 6, 2)^T, P_0 = (4, 2, -5)$
 - (c) $\mathbf{N} = (0, 0, 1)^T$, $P_0 = (3, 2, 4)$
- 9. Find the equation of the plane that passes through the points

$$P_1 = (2, 3, 1), P_2 = (5, 4, 3), P_3 = (3, 4, 4)$$

If $\|\mathbf{x}\| = 2$ and $\|\mathbf{y}\| = 3$, what, if anything, can we 10. Find the distance from the point (1, 1, 1) to the