It to a set of data points in the plane. The tests CISES tests and an artist of the set of the

1. For each of the following matrices, determine a basis for each of the subspaces $R(A^T)$, N(A), R(A), and $N(A^T)$:

(a)
$$A = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 4 & 0 \end{bmatrix}$
(c) $A = \begin{bmatrix} 4 & -2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 4 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}$

- 2. Let S be the subspace of \mathbb{R}^3 spanned by $\mathbf{x} = (1, -1, 1)^T$.
 - (a) Find a basis for S^{\perp} .
 - (b) Give a geometrical description of S and S^{\perp} .
- **3.** (a) Let S be the subspace of \mathbb{R}^3 spanned by the vectors $\mathbf{x} = (x_1, x_2, x_3)^T$ and $\mathbf{y} = (y_1, y_2, y_3)^T$. Let

$$A = \left(\begin{array}{ccc} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right)$$

Show that $S^{\perp} = N(A)$.

(b) Find the orthogonal complement of the subspace of \mathbb{R}^3 spanned by $(1, 2, 1)^T$ and $(1, -1, 2)^T$.

- **4.** Let S be the subspace of \mathbb{R}^4 spanned by $\mathbf{x}_1 = (1, 0, -2, 1)^T$ and $\mathbf{x}_2 = (0, 1, 3, -2)^T$. Find a basis for S^{\perp} .
- 5. Let A be a 3 \times 2 matrix with rank 2. Give geometric descriptions of R(A) and $N(A^T)$, and describe geometrically how the subspaces are related.
- **6.** Is it possible for a matrix to have the vector (3, 1, 2) in its row space and $(2, 1, 1)^T$ in its null space? Explain.
- 7. Let \mathbf{a}_j be a nonzero column vector of an $m \times n$ matrix A. Is it possible for \mathbf{a}_j to be in $N(A^T)$? Explain.
- **8.** Let S be the subspace of \mathbb{R}^n spanned by the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$. Show that $\mathbf{y} \in S^{\perp}$ if and only if $\mathbf{y} \perp \mathbf{x}_i$ for $i = 1, \dots, k$.
- **9.** If A is an $m \times n$ matrix of rank r, what are the dimensions of N(A) and $N(A^T)$? Explain.
- 10. Prove Corollary 2.5.
- 11. Prove: If A is an $m \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$, then either $A\mathbf{x} = \mathbf{0}$ or there exists $\mathbf{y} \in R(A^T)$ such that $\mathbf{x}^T \mathbf{y} \neq 0$. Draw a picture similar to Figure 2.2 to illustrate this result geometrically for the case where N(A) is a two-dimensional subspace of \mathbb{R}^3 .