Orthogonality

- 12. Let A be an $m \times n$ matrix. Explain why the following are true:
 - (a) Any vector \mathbf{x} in \mathbb{R}^n can be uniquely written as a sum $\mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in N(A)$ and $\mathbf{z} \in R(A^T)$.
 - (b) Any vector $\mathbf{b} \in \mathbb{R}^m$ can be uniquely written as a sum $\mathbf{u} + \mathbf{v}$, where $\mathbf{u} \in N(A^T)$ and $\mathbf{v} \in R(A)$.
- 13. Let A be an $m \times n$ matrix. Show that
 - (a) if $\mathbf{x} \in N(A^T A)$, then $A\mathbf{x}$ is in both R(A) and $N(A^T)$.
 - **(b)** $N(A^TA) = N(A)$.
 - (c) A and $A^{T}A$ have the same rank.
 - (d) if A has linearly independent columns, then A^TA is nonsingular.
- 14. Let A be an $m \times n$ matrix, B an $n \times r$ matrix, and C = AB. Show that
 - (a) N(B) is a subspace of N(C).

- (b) $N(C)^{\perp}$ is a subspace of $N(B)^{\perp}$ and, consequently, $R(C^T)$ is a subspace of $R(B^T)$.
- 15. Let U and V be subspaces of a vector space W. Show that if $W = U \oplus V$, then $U \cap V = \{0\}$.
- 16. Let A be an $m \times n$ matrix of rank r and let $\{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ be a basis for $R(A^T)$. Show that $\{A\mathbf{x}_1, \dots, A\mathbf{x}_r\}$ is a basis for R(A).
- 17. Let x and y be linearly independent vectors in \mathbb{R}^n and let $S = \operatorname{Span}(\mathbf{x}, \mathbf{y})$. We can use x and y to define a matrix A by setting

$$A = \mathbf{x}\mathbf{y}^T + \mathbf{y}\mathbf{x}^T$$

- (a) Show that A is symmetric.
- (b) Show that $N(A) = S^{\perp}$.
- (c) Show that the rank of A must be 2.