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1. Eind the eigenvalues and the corresponding
cigenspaces for each of the following matrices:
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. Show that the eigenvalues of a triangular matrix are
the diagonal elements of the matrix.
. Let A be an n x n matrix. Prove that A is singular
if and only if A = 0 is an eigenvalue of A.
. Let A be a nonsingular matrix and let A be an eigen-
value of A. Show that 1/A is an eigenvalue of A~".
. Let A and B be n x n matrices. Show that if none
of the eigenvalues of A are equal to 1, then the ma-
trix equation
XA+B=X
will have a unique solution.
. Let A be an eigenvalue of A and let x be an eigen-
vector belonging to A. Use mathematical induction
to show that, for m > 1, A" is an eigenvalue of A™
and x is an eigenvector of A” belonging to A™.

7. Let A be an n x n matrix and let B = I —2A + A2,

(a) Show that if x is an eigenvector of A belong-
ing to an eigenvalue A of A, then X is also an
eigenvector of B belonging to an eigenvalue
of B. How are A and p related?

(b) Show that if A = 11isan eigenvalue of A, then
the matrix B will be singular.

8. An n x n matrix A is said to be idempotent if

A2 — A. Show that if A is an eigenvalue of an

idempotent matrix, then A must be either O or 1.

9. Ann xn matrix is said to be nilpotent if AF = O for
some positive integer k. Show that all eigenvalues

of a nilpotent matrix are 0.

10. Let A be an n x n matrix and let B = A — ol for
some scalar o. How do the eigenvalues of A and B

compare? Explain.
11. let Abeann x n matrix and let B = A + [. Isit
possible for A and B to be similar? Explain.

12. Show that A and AT have the same eigenvalues. Do
they necessarily have the same eigenvectors? Ex-

plain.
13. Show that the matrix
£ [rcosdiwing
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will have complex eigenvalues if 6 is not a multiple
of . Give a geometric interpretation of this result.

14. Let A be a 2 x 2 matrix. If tr(A) = 8 and
det(A) = 12, what are the eigenvalues of A?

15. Let A = (a;;) be an n x n matrix with eigenvalues
)\.1, R )\.n Show that

Aj =ajj+2(a,-,- =) ofor =1 aEen
i#j



