- **6.** $\mathbf{F} = (x^2y + x)\mathbf{i} + (y^3 xy^2)\mathbf{j}$, D is the region inside the circle $x^2 + y^2 = 9$ and outside the circle $x^2 + y^2 = 4$.
- 7. (a) Use Green's theorem to calculate the line integral

$$\oint_C y^2 dx + x^2 dy,$$

where C is the path formed by the square with vertices (0, 0), (1, 0), (0, 1), and (1, 1), oriented counterclockwise.

- (b) Verify your answer for part (a) by calculating the line integral directly.
- **8.** Let $\mathbf{F} = 3xy \,\mathbf{i} + 2x^2 \,\mathbf{j}$ and suppose C is the oriented curve shown in Figure 28. Evaluate

$$\oint_C \mathbf{F} \cdot d\mathbf{s}$$

both directly and also by means of Green's theorem.

Figure 28 The oriented curve C of Exercise 8 consists of three sides of a square plus a semicircular arc.

9. Evaluate

$$\oint_C (x^2 - y^2) \, dx + (x^2 + y^2) \, dy,$$

where C is the boundary of the square with vertices (0,0),(1,0),(0,1), and (1,1), oriented *clockwise*. Use whatever method of evaluation seems appropriate.

10. Use Green's theorem to find the work done by the vector field

$$\mathbf{F} = (4y - 3x)\mathbf{i} + (x - 4y)\mathbf{j}$$

on a particle as the particle moves counterclockwise once around the ellipse $x^2 + 4y^2 = 4$.

11. Verify that the area of the rectangle $R = [0, a] \times [0, b]$ is ab, by calculating an appropriate line integral.

12. Let a be a positive constant. Use Green's theorem to calculate the area under one arch of the cycloid

$$x = a(t - \sin t), \qquad y = a(1 - \cos t).$$

13. Evaluate $\oint_C (x^4y^5 - 2y) dx + (3x + x^5y^4) dy$, where C is the oriented curve pictured in Figure 29.

Figure 29 The oriented curve C of Exercise 13.

14. Use Green's theorem to find the area enclosed by the hypocycloid

$$\mathbf{x}(t) = (a\cos^3 t, a\sin^3 t), \quad 0 \le t \le 2\pi.$$

- **15.** (a) Sketch the curve given parametrically by $\mathbf{x}(t) = (1 t^2, t^3 t)$.
 - (b) Find the area inside the closed loop of the curve.
- **16.** Use Green's theorem to find the area between the ellipse $x^2/9 + y^2/4 = 1$ and the circle $x^2 + y^2 = 25$.
- 17. Show that if D is a region to which Green's theorem applies, and ∂D is oriented so that D is always on the left as we travel along ∂D , then the area of D is given by either of the following two line integrals:

Area of
$$D = \oint_{\partial D} x \, dy = -\oint_{\partial D} y \, dx$$
.

- **18.** Find the area inside the quadrilateral whose vertices taken counterclockwise are (2, 0), (1, 2), (-1, 1), and (1, 1).
- **19.** Suppose that the successive vertices of an *n*-sided polygon are the points $(a_1, b_1), (a_2, b_2), \ldots (a_n, b_n),$ arranged counterclockwise around the polygon. Show that the area inside the polygon is given by

$$\frac{1}{2} \left(\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} + \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} + \dots + \begin{vmatrix} a_{n-1} & b_{n-1} \\ a_n & b_n \end{vmatrix} + \begin{vmatrix} a_n & b_n \\ a_1 & b_1 \end{vmatrix} \right).$$

20. Let *a* be a positive integer throughout this problem. An epicycloid is the path produced by a marked point on a circle of unit radius that rolls, without slipping,